ColEREPERIERZA0

© Copyright Sequiter Software Inc., 1988-1995. All rights reserved.

No part of this publication may be reproduced, or transmitted in any form or by any means without the written permission
of Sequiter Software Inc. The software described by this publication is furnished under a license agreement, and may be
used or copied only in accordance with the terms of that agreement.

The manual and associated software is sold with no warranties, either express or implied regarding its merchantability or
fitness for any particular purpose. The information in this manual is subject to change without notice and does not
represent a commitment on the part of Sequiter Software Inc.

CodeBasé™ and CodeReportef™ are trademarks of Sequiter Software Inc.

Borland C++* and Turbo C++° areregistered trademarks of Borland International® &'
Clipper® is aregistered trademark of Computer Associates.
dBASE ®is aregistered trademark of Borland International.

FoxPro® isa registered trademark of Microsoft Corporation.
MetaWare High C" is a trademark of MetaWare Inc.

Microsoft C® isa registered trademark of Microsoft Corporation.
Microsoft Windows® isa registered trademark of Microsoft Corporation.

052%isa registered trademark of International Business Machines Corporation.

Contents

Introduction 7
FEALUMES.....cee et 9

Getting Started 11
SYSEEM REGUITEIMENES ...ttt et e et e emte e e sne e e e neeesmeeeesneeeeneeeans 11

[6 11 = o] o SRS 11

INSEBITBLTION. ... 11

FIHE FOMMEES ...t 11

Starting COOBREPOMESueeeieeiiee ettt 12
ACCESSING REPOIT FIIES ... e 13
Loading @REPOIeeieieeeee et 13

Starting aNEW REPOIToocviiiiiiieeee s 13

SAVING AREPOM ...t 13

MaNUal CONVENMTIONS..........ceeirieiieeiiesiee et nn e 14

[COMNS .. 15

REPOI DESIGN SCIEEN........iiiiieiee e 15
Contacting Sequiter 17
QUAITEY CONEIOL ... nin e 17
TEChNICal SUPPOIT ...t 17

BBS SUPPOIt ... ERROR! BOOKMARK NOT DEFINED.
AGUMESSES......c.ceeeee et 18
Tutorials 19
1. Designing a Report 39
REPOI PUIMPOSE ...ttt e st e e s s e e e e e eanre e e s ennes 39
PrOLOLYPE ON PAPES ...ttt ettt et e e e st e e e s s b e e e e e enre e e e enees 40
ANBIYZE ThE PrOLOLYPE. ...ttt 42
Finding COMMON rEPOM @IEES.........eeeiieie et seeeeaeeas 43
Locating report € eMENES..........c.eiiiiee et e e e e s 44
Designing the REIALON.coo i e 46

1AENtifY the TAGS. .. eeeeeee e 47

Determining Top Master DataFile.........ccooooviieieie e 47

LayOuUt the FEDOIT........oeeeie e 48
Validate the FEPOM.........oe i e sre e e enee e 48

2. Relational Reporting 49
REIBIIONS. ... e 49

COoMPIEX REIBLIONS.......coteiiiieeieesiee st nane e 52

S F= 0] 1Y 6T 52

Exact MatCh REIGHONS..........ooiiiiieiieeeee e 53
Approximate Match REIEtioNS............coooiiiiiiieee e 53

SCAN REIGLIONS......coiiiieieeee e 55

Master of MUILIPIE SAVES. ..o e 56
Creating REIGHONS.cooiie e et e e sneeeenaeeeens 57
Selecting Top Master Data File..........coooviieiiiiieeeeee e 57

Bit Optimized Query TEChNOIOGYeeerveeeiiereiiee e 58

The Relation DIialOg........cooeiiiiiiieeeiee e 58
AddingaSlave DataFile..........cocooiiiiiiieeee e 58
Modifying @ REIEHONoooiie e 59

Sorting the Composite Data File..........ccoooiiiiiiiie e 62
SOOI EXPIrESSION ...ttt 62

Query the Composite Data File..........cocveiiiiiiiieee e 63
REIBIONS ON DiISK ... 64
SAVING @S COUE......cc.ueiieiiie ettt 64
= 0] =R 65
Top Master Data File........ooueiiieeiee e 65
Modifying the REGHON............ooiiieee e 66

Adding 8 aVeto 8T AVEc.eieiieee e 67

3. Groups 69
WHEE 1S @ GIOUPT? ...ttt ne e nnn e 69
GIrOUD EXPrESSION. ...ttt nin e 70
Header a0 FOOLENcoiiiiieiee et 73
CrEaliNg GIOUDS.couveeteeiieeeieesiee et ettt et sse et s e e sse e s e ss e sneessneeneesneennneen 74
NBITIE. ..ttt e e nr e s e s s anr e e s e e nnr e e e nneena 74
POSITION ... 75

GIOUP OPLIONS ...ttt sne e e n e e nneennne e 75
Swap Header and SWap FOOLENccooviriieiieieieeee e 75

REPEAE HEAOES ... 77

RESEL PAOE......cee ettt 78

ReSat Page NUMDESc.oiiiiiie e 78

Hard RESEL Page.........eeeieeiee et 78
MOUITYING @ GIOUD.c.eeerireeteesiee ettt 78
DEENG 8 GIOUD......eeeeeeeiiieiee sttt 78
SEECHING B GIOUD. ...ttt n e sneennne e 78
Reset Conditions and Group Printingccceoeerreeieenieeeeseesee e 78
4. Areas 81
SEECHNG BN ATEB....cceeieiee et nare e 81
CrealiNng @M ATEA.....ccueeiii ittt e e ne e ne e neenane e 82
DEEING @M ATEA ...ttt 82
MOITYING @M ATEAL. ... 82
SIZING 8N ATEBL.....eeeeee e 82

AlIOW PagE BIreaKS..........eeeiieiiiiiiieiiee et 83
SUPPIESSING @M ATEBL.....ceiueieieesiee ettt nees 83

Page Header and Page FOOLEr ATEESoocuieieeriieieesee e 84

= 0] =S 85
5. Output Objects 87
Creating OULPUL ODJECES.......cccueeiieeiieeiee st nnee e 87
INSEI MOOE ...t 87

USING the BUEON Barcceoiiieeeeeeee e 88

USING thE MENU ... e 88
Creating Multiple ODJECES.......c.cciiiiiiiieeeee e 88

Objects Within OBJECES........eeiiee e 88
SEECHNG OBJECES.....ccueeeiee e 89
MUILIPIE SEIECHION. ... 89

(D= 1 (1o O o= oi £ 90
L0V T 0o o= o R 90
SENSITIVITY e 90

N [T 10 = 0| SRS 90

Space Horizontal - VErtiCalcoooeeeieieiee et 91

TOTOP - BOMHOM. . e 92

Cut, CopY AN PASLEc.eeeiieiiieeeeiee et 93
MOIfYING ODJECES. ...t 93
ODJECE SEIINGS ... ettt 94

SIZING. ettt R e ne e nare e 96
RTAT L0 (0 A = T 97
LOOK ANEA.......ceeeeee e s 97
EXAIMPIE ... e 99
INUMDEIS ...ttt e e e n e be e e e e e e e neennes 101
NUMENTC TYPES ..ttt nane e 102
NEGAIVE NUMDEIS ... 102
LEAOING ZEIO ... 102

DISPIAY ZEIO.....eeeiieeieee e 103
DECIMAIS ... 103

DIBLES ...ttt 103
DA PICIUIES ..ottt 104

Default Date FOMMELccoiiiiieeieesee e 104

DiISPIAY ONCE ...ttt 105
TEXE ODJECES. ...t 106
LiNES AN FTaIMES......couiiiiiiieeieere et 106
LIS e 106

FRBIMES ... e e 107

(070] o) CH PRSPPSO 107
OBJECLS WITNIN.......eeiie e e 108
GAPNICS ...ttt 108
Creating a GraphiC ODJECL...........oeieeiiiiieeieesee e 109

Scaling GraphiC ODJECES..........oiviiiieiieeie e 110

FHEIOS. . 111
PlaCEMENT ... 111

MEMO FIEIUS. ... 113

CAlCUIBLIONS ...ttt naneene s 113
Creating CalCUIBLIONS.........coieiiieeieeree e 114
Deleting CalCUIALIONS.........coiceeeee et 115
CalCulation ODJECES.coiveeiieie et 115

TOLAIS ..o 115
Creating @ TOal.......coe e s e 116
B3 0= TP UR T 117
RESEL EXPrESSION ...ttt 118
DEeting @ TOtalc.coiiiiiieieee e 119
LOOK ANEAO TOAIS ... 119
ConditioNal TOAISccuvieiieiie e e 119

6. Columnar Report Wizard 122

INVOKING REPOI WIZEIT ..ot 122

Creating @REPOMooiiiiiieiiere e 123
AdAING FIEIS ..o 123
SUDEOTAIS ... 123
SOrting aNd QUENYINGccveeiueerreeiieeniee et 124

= 0 0] = 124

7. Expressions 126

General dBASE EXPression INfOrmMationcceeoeeriieeneeneeeieesee e 126
Field Name QUAITIENcoeeeeee e 127

OBASE EXPression CONSIANES.cccueeieeriiriieniee e 127

OBASE EXPreSsion OPEIalOrS.cccveeiueereerreenieesreareesseeseessseesseessnessneesneessneennees 127
PrECEOBNCE. ... e 128

Easy EXPression ENLIYoovioiieieeeesee e 130
Easy Expression Entry Dialog.........ccceiveiieeiienie e 130
USING EGSY EXPIrESSION.....cc.ueiieiiieeieesiee st 131

8. Styles 133

WY SEYLES....c.eeeeeeee ettt b et b e sb e ae e 133

Crealing SEYIES......oeeieeeieeee et 134

DEEiNG @SIYIE.....ooeeeeeee e 135

MOAITYING BSYI€.....eeeeeee e 135

SEECHNG A SEYIC.....eeeeee s 136
FOr @n ODJECL.......coeieiieieee e 136

NON-WINAOWS SEYIES.......coeeiiieeiieiie et 136
SPECITYING SEYIES .. e 137

EXBMPIE. .. 139

9. CodeReporter Options 141

VIBW OPLIONS ...ttt n e b s e n e e b e e e nnneenees 141

REPOIt PrefErenCeS ... 142
Display UNitS... ..t 142

VIBW PagEB SIZE ...ttt 143

10. Customizing Reports 144

Margins and Page SIZE.........c.ooiuiiiiiiieeieeee e 144

1Y/ TS 144

Page WIAEh... ..o e e 145

(@ 41 o172 1[0 ISP PSR 145

S 80 U = = o 145
NUMENTC FOIMEL ... 146

DAt FOMMIEL ... 147

Path NaIMES ... 148

HAIrd RESEL.......c.oeeeeee e 148

Page Break After Titleooi e 148

L 010 0o o] o S 149

11. Printing 151
SEECHING A PHINTEN ... e e 151

TOTNE SCIEEN ...t ne s 152

TO @ PTINEEN ...t ne s 152

TO AFIIE s 153

PrNE VS, VIBW ... 153

TOADAADESE FIl@.......oiiiieieeeee s 154

(@ 0 1= o TP U USROS 155

RECOrd OULPUL GIOUDceeuveeiieriee ettt 156

OULPUL Dat@ Fil€......eeeeieee e e 156

Print t0 Daafil€.......cc.eiieieeeeee e 156

EXAMPIE ... e 156

12. Function Reference 158
REPOIt MOTUIE NBIMES. ..ottt 158

SAVING AS COUR.......eeueeeiieeii ettt nan e nees 159

USING REPOIT FUNCLIONS.........oiieiie ittt 161

USINg @REPOI File... ..o 161

USING GeNEratet COB.......coeieeeeeeee et 164

Creating a Report from SCratChcoooviieiie e 166
CUSIOM OULPUL DITVEIS ...ttt 167

Using the Custom Driver Shelloooviiiiiiiieeeeeeeee e 169

Appendix A: dBASE Functions 236
Appendix B: Keyboard Interface 239
Appendix C: Cursors 244
Appendix D: ASCII Chart - Partial 246
Appendix E: Error Codes 248
Appendix F: Basic/Pascal API 250

Appendix G: Launch Utilities 264

Introduction 9

Introduction

CodeReporter is a comprehensive relationa report designer that takes the
painstaking work out of creating custom reports.

Use CodeReporter to design intricate reports visualy using simple point-and-click
commands. The report data can come from any datafile in any directory on any
drive or network drive. The ties between the data files used in the report are made
using smple dBASE expressions. Use only a portion of the data files by creating
aquery -- again using asimple logical dBASE expression. CodeReporter takes
care of the complexities.

The speed of the Sequiter Software's Query Technology is clearly evident in all
aspects of CodeReporter. Sort, query, and relate at unmatched speed.
CodeReporter can query a 500,000 record data file and begin output in just one
second.

Reports designed using CodeReporter under Windows are portable and
configurable. Use the same report in any application by loading a report file or by
generating source code that can be linked directly into DOS, OS2, UNIX , and/or
Windows applications. Once the report structures are obtained (hard or soft
coded), the CodeReporter API functions may modify them to create atruly custom
solution.

CodeReporter takes advantage of Windows display and printer drivers when
outputting reports. Any part of the report can be made to ook unique by changing
the size, typeface, and/or color. Using the Windows standard and TrueType fonts,
areport will look exactly the same on the printer as it does in the screen preview.

These features and more, make CodeReporter an indispensable tool for any
software designer or end user!

Features

CodeReporter integrates the powerful features of many DOS-based report
writers with the added benefits of Windows and Sequiter Software's high
performance database capabilities.

Relations Relate any number of datafiles using any one of the following techniques:

Oneto One. Have adirect correspondence between the data files.

Oneto Many. Have aunique search value from one datafile retrieve
multiple recordsin arelated file.

Many to Many. Have any number of duplicate search values from one
datafile retrieve multiple records in arelated file.

The relations may be joined together in any combination, so that relations such
as aone to one to many to many to one are completely supported.

10 CodeReporter

Queries

Totals

Look Ahead

Fonts

Cut and Paste

Display to Screen

Save as Code

Graphics

Print to a DataFile

Distribution

Limit the scope of the records used in areport using simple or complex
dBASE expressions involving fields from any data file used in the relation.
For instance if datafile'A' isrelated to datafile 'B' whichin turn is related to
datafile'C', and 'C' contains a value that shouldn't be used in the report, an
expression such as C->FIELD_NAME<>'VALUE' could be used.

Numeric information in areport is often most useful in a summarized format.
Long columns of numbers mean very little until the 'bottom line' is seen.
CodeReporter can summarize numerical datain a number of ways:

Sum. Maintain a numerical sum of agroup of numbers.
Highest/Lowest. Store the largest or smallest numeric value encountered.
Average. Maintain the mean vaue.

Totals may also be set as "look ahead"” totals. Thisletsatotal skip ahead of
the actual report output and continue its accumulation -- so that when it is
outputted, it displays the sum of information in the report before that
information is displayed. Thistotal can then, for example, be used in
calculations later in the report to display a percentage of the total.

CodeReporter makes full use of the fonts available under Windows, including
TrueType fonts. Use any number of typefaces, sizes and colorsin areport,
simply by creating a style. 1f Windows can display afont, it can beusedina
report.

Move any output object in the report with familiar click-and-drag mouse
commands. Familiar cut and paste commands can also be used to make
multiple copies of output objects.

Save paper when designing areport by sending test output to the screen.
Since CodeReporter uses Windows fonts, the fonts appear the same on paper
as on the screen.

Once areport is designed using CodeReporter, save it in a soft coded report
file for the next CodeReporter session, or save it as C source code. The
generated code can then be included in any CodeBase C/C++ application
under DOS, Windows or OS/2.

Customize reports with pictures! Either place static graphic e ements such as
a company logo, or load graphic elements on-the-fly as the report is running.

CodeReporter 2.0 includes the ability to output areport to adatafile. This
new feature lets a user do areport based on the contents of a previous report,
or use CodeReporter as a data transformation tool.

Application developers may purchase additiona copies of CodeReporter at
bulk rates and resell them to their end users. Contact Sequiter Software Inc.
for further details.

Getting Started 11

Getting Started

System Requirements

The reports created with CodeReporter and the report functions may be used under any
platform. CodeReporter itself, however, must be run under Windows NT or 95/ 98.

| CodeReporter requires a Windows-compatible mouse.

Recommended The following configuration is a suggested minimum to make full use of CodeReporter:
IBM 386 or true compatible processor running at 25 MHz or higher
4MB RAM or more
Windows-compatible SVGA color monitor
A two-button Windows-compatible mouse

A hard drive with at least 1.6 MB free space for each version of CodeReporter
installed. (Depending upon the report, additional space may be required during its
execution.)

CodeReporter runs under dmost any configuration that runs Windows, however, the more
the powerful computer, the faster the reports will be generated.

Registration

Please take a moment to complete and mail in your CodeReporter registration card.
Doing so assures you of quick technical support and notification of upgrades.

Installation

When purchased in a bundle with other Sequiter products (such as CodeBase 6),
CodeReporter may be installed through the bundled package's installation program .
When purchased separately, CodeReporter may be installed by executing the
INSTALL.EXE program on the CodeReporter #1 disk.

File Formats

CodeReporter relies on the CodeBase database engine for opening the data, index and
memo files used in the creation and display of reports. Therefore, CodeReporter can be
used with any of the file formats supported by CodeBase. Presently this includes FoxPro,
dBASE IV and Clipper formats. During the installation program, the general file format

12 CodeReporter

option that you select is used to install the necessary CodeReporter files needed to support
that format.

CodeReporter supports the following index file formats:

dBASE 1V indexes (MDX). When using this compatibility it is not possible to
access the dBASE 111 PLUS indexes (.NDX) even though dBASE 1V may access
both.

FoxPro 2.5 (and higher) compact indexes (.CDX). CodeReporter does not support
earlier, non-compact versions of FoxPro indexes.

Clipper indexes (.NTX). CodeReporter works with both Clipper Summer '87 and
Clipper 5.x.

Starting CodeReporter

CodeReporter is a 32-bit Microsoft Windows application --to run it you need Windows
NT or Windows ‘'95/'98. By default, the CodeReporter executable CREP2.EXE, and its
support files, are installed in the C:\CODEBA SE\CODEREP sub-directory.

To run the application, locate the CodeReporter program using File Manager (Windows
NT) or the Windows Explorer (Windows ‘95/'98). Double-clicking on the CodeReporter
program item icon will launch the application.

You can also set up permanent program item icons (Windows NT) or program shortcuts
(Windows ‘95/'98) to make it easier to launch CodeReporter. Refer to your Windows
user’ s guide for more information.

Command-line Arguments

CodeReporter can accept a single command line argument which represents the name of a
previoudy saved CodeReporter report file. CodeReporter will attempt to load the report
and any data files associated with it.

Command-line arguments can be associated with permanent program item icons and
shortcuts. In addition, under Window ‘95/°98 and NT, command line arguments can be
specified by invoking CodeReporter from the command line of a DOS window. For
example:

c:\ codebase\ coderep> crep2 nyfile.rep

Getting Started 13

Accessing Report Files

Reports created with CodeReporter may be saved in CodeReporter report files, which
have a".REP" extenson. These report files contain al the specific information of the
report--including the path to the data filesin the report's relation and the styles used in the
report.

Loading a Report

1.0 Files

A previoudly created report may be retrieved by selecting the FiLE | OPEN menu option.
Use the "File Open" common dialog to locate the desired report file and select the "OK™
button.

If an attempt is made to load a report file when one is already loaded, CodeReporter
closes the current report.

FILE / OPEN WITH PATH may also be used to open areport file. In addition to
prompting for the name of the file, the FILE / OPEN WITH PATH menu option prompts
for the directory in which the data files of the report may be found.

Use FILE | OPEN WITH PATH when the data files for a report have been moved to another
directory.

CodeReporter version 1.0 files may be imported into CodeReporter 2.0 using the
FiLE | OPEN OLD FILE menu option.

Starting a New Report

A new report may be created by selecting the FiLe | NeEw menu option. This closesthe
current report and invokes the "File Open” common dialog so that the top master datafile
may be selected.

CodeReporter automatically creates and displays a new group named "BODY™ in the new
report. The file name for the new report is specified when the fileis saved.

Saving a Report

With a New Name

TheFiLE | SAvE menu option causes CodeReporter to save to disk the changes that have
been made to areport. If areport has not previoudy been saved (i.e. a new report),
CodeReporter uses the "File Open" common dialog to obtain the report's file name.

A report may be saved under a new name using the FiLE | SAVE As menu option. This
causes CodeReporter to prompt for a new file name in the same manner as if the report
were a new report.

14 CodeReporter

Manual Conventions

Example:

Example:

Example:

Example:

Listed below are the typographic conventions used within this manual.

Menu options are listed in a bold, small capital letter, Aria font. If asub-menuislisted,
the main menu listing is followed by the | character and the sub-menu listing. In addition,
the words "menu option" generally follow the name of the menu.

Choose the File | New menu option.

The names of dialog boxes are encased in double quotation marks and use
the manual's regular font. In addition, the words "dialog" or "dialog box"
generdly follow the name of the dialog.

Use the "Easy Expression” dialog box to enter dBASE expressions.

The names of controls within adialog box or within the CodeReporter
design screen are encased in double quotation marks and listed in the
manual's regular font. In addition, the type of control is generaly listed
after the name of the control.

Choose an entry in the "Fields' list box and select the "OK" button.

dBASE expressions arein atypewriter font, and are generally in upper case
(the only exception is with literal text that isincluded in a dBASE
expression). Fields referenced within a dBASE expression are qualified
with the name of the data file to which they belong and a'->'. Seethe
Expressions chapter for information about dBA SE expressions.

‘Name: '+ DATA->NAME+'Age: '+STR(DATA->AGE,3,0)

All directories listed within this manual are assumed to be subdirectories of
the CodeReporter directory (default: C:\CODEREP). When subdirectories
are listed, the CodeReporter directory islisted as'.\', which means "this
directory." Therefore, the \EXAMPLES directory is the same as the
C\CODEREP\EXAMPLES directory.

Getting Started 15

Icons
At various points throughout this manual, the following icons are used to bring attention
to important information.
:E Thisicon indicates that the particular function only relates to Microsoft

Windows applications. Thisisonly available if the report module functions
have been compiled with the SAWINDOWS switch. Thisicon incorporates
an image copyrighted by Microsoft Corporation.

Thisicon indicates that the particular function may not be applied to

Microsoft Windows applications. Thisicon incorporates an image copyrighted
by Microsoft Corporation.

Report Design Screen

At various points, this manual makes reference to elements within the CodeReporter
design screen. These elements areillustrated in Figure 1, on the next page.

Menu Button Ruler
Bar Bar

[l CodeReporter 2.0: UNTITLED

File aAlign Edit View BEeport Relation Group Area Object §t_l,l|e

Help
Field | Expressiunl Total | Calculation | Textl H—Linel V-Line | Framel Nonel Pui | Previewl |
L
ﬁl | o il] 1 H e [nilint] i’ H
[T T T T T AT T [T T T T T T A T [T T AT T A T [T T T T A T T [T I T A T T AT T O T [T T A T T T T A T [T T T AT T T T T AT T [TT T T T I T TITTIT]l
Group: Body Header Areal of 1
COMPHAME
N 2 /
| Groug: Body Footer [/ / /
/ / /A /4
/ e 4
Szing
Info Output Areas Handles
Windows Object
Syle Satus
Popup Bar
Button /
Plain Text = _ Body - Aread, Heightl. 646 om.

Figure 1 Report Design Screen

Contacting Sequiter 17

Contacting Sequiter

If you have a comment or question about this product, or any one of Sequiter's products,
please fed freeto contact us by phone, e-mail, fax, or mail. Y our comments and
guestions are very important to us.

Quality Control

If you are not completely satisfied with product quality or our service, please ask for or
address your comments to "Quality Control”.

Technical Support

In order to help us serve you better, you must be able to provide the following information
to the Technical Support Representative:

1
2.
3.

Y our name, phone number, fax number, and the name of your company.
The fact that you are using CodeReporter 2.0.

Y our CodeReporter serial number. Thisis either on your CodeReporter diskettes or
the inside front cover of the CodeBase Reference Guide.

4. Your operating system and its exact version.

5. Thefile compatibility of the CodeReporter version you are using (FoxPro, dBASE

IV, Clipper).

The date of the files on your CodeReporter diskette. Periodically Sequiter may issue
maintenance releases. In this case, the exact maintenance release you are using can
be determined by performing a directory listing on the CodeReporter diskette files and
checking the date stamp of the files.

Thefile size of the CodeReporter executable file being used.

If you wish to submit a report which is not working properly in order that Sequiter
can test it, you need to provide the above information and also do the following:

E-mail the report to us or send a copy on diskette by mail or courier. It isimperative
that the data, index and memo files used in the report be included aso.

Save the report file without path names (See the Path Names section of the
Customizing Reports chapter for information on how to do this).

Provide in written or eectronic form al the information listed above in 1-7.

Specify exactly what the problemis.

We are here to help and will do our best to provide high quality service.

18 CodeReporter

Addresses

Listed below are the Sequiter Software Inc. contact information. Please visit our web site
for additional ways of contacting Sequiter Software Inc.

Sequiter Software Inc. Sequiter Software Inc.
P.O. Box 783 112 Powis Street
Greenland, NH, USA London, UK

03840 SE186LU

Voice: (403) 437-2410
Fax: (403) 436-2999
E-mail: info@sequiter.com
http://www.sequiter.com/

Voice: (44) (181) 316 5001
Fax: (44) (181) 316 6001
Error! Bookmark not defined.

Newsgroups. comp.databases.xbase.codebase

Tutorials 19

Tutorials

This chapter of the manual is used to quickly familiarize CodeReporter 2.0
users with some of the basic procedures used in creating reports. After going
through the tutorials listed in this chapter, a user of CodeReporter 2.0 will be
ableto:

Open existing report files with and without paths
Create new reports from scratch

Place text, expression, and calculation output objects
Create and place total output objects

Create report areas and size them in two ways
Create a relation manually and load one from disk
Preview areport

Use "Swap Header" and "Swap Footer" options

Additional examples of using some of the special features of CodeReporter
2.0 may be found near the end of the following chapters. Relational
Reporting, Areas, Output Objects, Columnar Report Wizard, Styles, and
Printing. Use the Index to locate the exact pages.

Loading a Report with Paths

Thisfirst tutorial describes the steps necessary to load two different reports
locate their data filesin different manners.

Opening in Current Directory

The first sample report, TUT1.REP ssimply lists out the contents of the
COMPANY .DBF datafile.

When this report file was saved, the drive and directory for the data file was
not saved within it (See the CodeReporter Options chapter for information on
how to do this). The datafilesfor the report are then assumed to be in the
same directory asthe report file. The advantage in thisis that the report and
data files may be moved to any drive and any directory aslong asthey are
moved together.

Invoke CodeReporter in one of the ways described in the Getting Started
section of thismanua. Once it is running, use the FILE | OPEN menu option
to invoke the "Select Report File" dialog. Use the drives and directories list
boxes to navigate to the \EXAMPLES directory. Once there, select the
TUT1.REP report file and select the "OK" button. The report is loaded from
the current directory.

20 CodeReporter

Opening With a Path

TUT2.REPisjust the opposite of TUT1.REP. The different drives and paths
for the COMPANY .DBF and STORES.DBF data files are saved within the
report.

An attempt to open this report with FiLe | Open will result in CodeReporter
warning that the file could not be found and asking if an aternate file should
be substituted for each file that could not be found. Thisis useful when the
file names or directories of the data files within the report have changed -- but
manually changing each and every file can be quite time consuming,
especiadly if al files are located in the same directory.

The FILE | OPEN WITH PATH menu option overrides the drives and paths stored
within the report file and replaces them all with the drive and path provided
by the report's designer. Use FiLE | OPEN WITH PATH to open the TUT2.REP
file and specify the CodeReporter examples directory: \EXAMPLES.

Creating a Database List

This next tutorial shows the steps necessary to create a simple report that
lists the contents of the COMPANY .DBF datafile. This datafile, which
contains the fields COMPID, COMPNAME, and CEO, islocated in the
CodeReporter examples directory: \EXAMPLES.

flil CodeReporter 2.0: UNTITLED Hi=] E3
File Align Edit “iew Beport Relation Group Area Object Shle Help
Field | Expressiunl Total I Calculation | Textl H—LineI V-Line | Framel Nonel Printl Previewl |
ﬁll|III}II|I%II|II?I|II1III|I?I|IﬁI|II|I‘
[T I T T e T T [T T T T T T [T T T T T [T T T T T T T T i T T T T [T AT T T T T [T T T T (T T AT T [T T I T T T riTrr]l
Group: Po Header/Footer Header Argal of 1
1D COMPNAME CEOQ
rGrouD: TitleSurmmary Header
Comnpany List
| Group: Body Header
COMPID COMPNAME CEOQ
WS Senif m- Pg Header/Footer : Area 1, Height 0.846 cm.

Figure 2 Completed tutorial three report

Tutorials 21

Start a new Report

Select the FiLE | NEw menu option once CodeReporter is running. This
removes any currently loaded report and prompts for the first data file of the
report (the top master datafile). Since the report isto list the contents of the
COMPANY .DBF datafile, navigate to the CodeReporter examples directory,
select COMPANY .DBF and then the "OK" button.

Once thisinitial setup is completed, CodeReporter displays a blank report
design screen. A default group, "Body" is created with one header areain
which output objects may be placed.

A sample sketch report would demonstrate that the report only requires one
area of the report which repeats for each new composite record.
CodeReporter automatically creates this area for each new report, so no new
areas need be created. (For information on "areas’ and "groups’ see the
Areas and Groups chapters).

Place repeating elements

The default area should contain fields from the top master data file whose
values change with each new composite record. To put CodeReporter into
insertion mode so that these fields may be placed within the "Body" area,
click on the "Field" button on the button bar. Doing so invokesthe "Field
Objects’ floating list box (Figure 3, below) which contains all of the fieldsin
the composite datafile.

Field Objects I

- COMPANY -
COMPID
COMPHAME
CEO

Figure 3 Field objects list box

Use the mouse or the keyboard to select al the fieldsin the list box, just like
normal Windows list boxes (press and hold the left mouse button and drag it
over dl threefields).

Once the desired fields are selected, position the mouse cursor over the
"Body" group's header area. Do not select the "Done" button at this point.
Notice that the cursor changes from an arrow to afield insertion cursor (See

22 CodeReporter

Appendix C for all cursors). Thisindicates that the next click of the left
mouse button establishes the point where the upper left corner of the fields
are placed.

Position the cross hairs of the field insertion cursor at the left side of the
"Body" area and press the left mouse button. Thisinvokes the "Field Layout"
dialog. Since the default settings are fine, select the "OK" button to complete
the field placement. The report design screen now looks like Figure 4.

flil CodeReporter 2.0: UNTITLED Hi=] E3
File Align Edit “iew Beport Reldtion Group &rea Object Shle Help
Field | Expressiunl Total I Calculation | Textl H—LineI V-Line | Framel Nonel Printl Previewl |
ﬁll|I}I|I%I|I?I|I1I|I?I|Iﬁl|I’1’I|Iq‘
[T I T T e T T [T T T T T T [T T T T T [T T T T T T T T i T T T T [T AT T T T T [T T T T (T T AT T [T T I T T T riTrr]l
Group: Body Header Areal of 1
COMFPIL COMPNAME CEQ
Plain Text m- Body : Area 1, Height 0.846 cm.
Figure 4 Partially designed tutorial three report

Preview Report

At this point, the report design may be considered finished. It has successfully fulfilled its
requirements, namely, to output the contents of the COMPANY .DBF datafile. Usethe FiLE |
PRINT PREVIEW menu option to view the report. Asseen in Figure 5, thisreport is remarkably
bland and relatively obscure. Unless the reader of the report is very familiar with the contents and
layout of all the data files accessible, it isimpossible to know exactly what this report is

displaying.

Tutorials 23

(i CodeReporter 2.0 _ [O]
Hest Close
ATHADL Athabasca Inc. E3468100 j
EUCLI Euclid Enterprizes Inc. FCA01200
HAMS01 Hamstring Productions Ltd. LEZZ1600
PARINL Paradise Products H3016300
BLANDL Bland Or Mot GD026300
< o
Figure 5 Partial tutoria three output

Adding Explanatory Areas

The most obvious addition to help explain the report would be atitle like
"Contents of COMPANY .DBF". However, placing thistitlein the "Body"
group's header areais not appropriate, since it would be repeated for every
record in the composite data file.

Title Area A titlefor the report is properly placed within the title report area. Report
elementsin the title area are outputted at the top of the first page before any
other output area's objects, including the page header area. Assuch, this
areamay be used as a "cover page" for the report. To create atitle area,

choose the AREA | NEw TITLE AREA from the menu. The new report area is
created.

The title "Contents of COMPANY.DBF" or any other appropriate title is
considered static text. Once put in the report, its value is set.
CodeReporter is put into insertion mode for static text by pressing the
"Text" button on the button bar, or by choosing the OBJECT | TEXT menu
option. Notice the mouse cursor changes to the Text Insertion cursor to
indicate the position of the text output object.

Place the mouse cursor within the newly created title area and click the left
mouse button. This specifies the upper left corner of the output object's
text. When the new text object is placed, the "Enter Text for Text Object"
dialog is invoked so that the text for the text object may be entered.

Enter "Company List" or some other descriptive string and choose the "OK"
button to complete the object creation. The newly created output object, to
be visually appealing, should be horizontally centered within the report
design screen. To do this, use the mouse to manually drag the text output
object to the approximate center of the area, or choose the ALIGN | CENTER

menu option.

24 CodeReporter

Page Header These new additions to the report describe what the report is and when it is

completed, however it doesn't identify what each of the report's columns are.
Following the steps above, static text objects could be placed beside each of
the field output objects to identify the field, but this would also cause needless
duplication within the fina outpuit.

What this report needs are column titles -- static text objects placed at the top
of each column that contain the name of thefield. If the report crosses anew
page, these column titles should also be reprinted at the top of the new one.

A report areathat is outputted at the top of each page is the Page Header
area. Each page, with the exception of the first page (if there is atitle area),
begins with the page header area, no matter what the contents of the
composite data file.

A Page Header report area may be created by using the ARea | NEw PAGE
HEADER AREA menu option. A report area with a default size of .33 inches
is created. Within this area, place the following text output objects:

ID
COMPNAME
CEO

and manually move them into position above their respective field objects.
When finished, choose the "None" button on the button bar (or the ESC key)
to move CodeReporter out of insertion mode.

The report design screen should now look very similar to the one shown in
Figure 2 and the previewed output should look like Figure 6, below.

There are two items worth mentioning about this output—the first, is that the
Title Area string ‘ Company List’ appears on the same page as the recordsin
the report. Thisis achieved by setting the REPORT | PREFERENCES - PAGE
BReAK AFTER TITLE checkbox off. Be default the Title Areais displayed on its
OwWn separate page.

The second item worth noting, is that the last character of the CEO field
output appears to be only partially outputted for some of the records. Thisis
aresult of CodeReporter's estimation of the size of the output object based on
the font's average character width. The estimation using average character
width may be off alittle bit when capital letters -- which may be wider than
the average width -- are found in the field.

i CodeReporter 2.0

HHeqt Cloge

D
ATHAN
EUCLI
HAMZN
FARIOL

BLANNL

T

Company List
COMPHNAME CED
Athabasca Ine. ES468100
Euchd Evferprises Inc FCan1zn
Hamstring Productions Lid. LR2Z160
Pavadise Products H301630
Bland Or Nat D230

Tutorials 25

2 |7

Figure 6

Completed tutorial two report

To fully display al of the field, select the CEO field by clicking the object
with the left mouse button. Notice that when selected, eight little black
squares appear on the object. These are sizing handles, which may be used to
change the space used to output the object. Click and hold the left mouse
button on one of the right sizing handles and drag it to the right about an
1/8th of an inch. When the sizing handle is released, the CEO output object
isresized to the new width and when the object is outputted, the entire
contents of the CEO field is displayed.

Statement of Accounts Report

The following tutorial brings together many of the complex features of
CodeReporter 2.0 into asingle invoice report. The completed report design
screen is shown in Figure 7.

Load the Relation

Thistutorial uses arelation saved in the TUT3xxx.REL relation file. This
relation file contains the relation for the two data files used in this report:
INVOICES.DBF and CUST.DBF. When arelation file is loaded, all
previoudy used data files are closed, and the new filesin the relation are
opened and used.

Loading arelation saves time by quickly retrieving an often used relation
from disk instead of manually building the same relation for several reports.

While CodeReporter is running, use the FiLE | LOAD RELATION menu option to
load therelation file. Since relation files are index file specific, load the
appropriate version of therelation file aslisted in Table 1, below. If the

26 CodeReporter

index file version of CodeReporter is unknown, use the HELP | ABOUT menu

option.

Relation File Name

Index Compatibility

TUT3FOX.REL

FoxPro

TUT3MDX.REL

dBASE IV

TUT3CLI.REL

Clipper

Table1 Relation file compatibility
= CodeReporter 2.0: INVOICES
File Align Edit View Report Relation Group Area Object Style
Field ||Expression || Total Calculation || Text || H-Line || V-Line ||Frame |Nnne|
0 1 2 3 L 5 1 7 g
I T T Ty [T Ty [(T [) T I |
LN R L L L L R LN LR R RN R RN L RN R LR Ry
I Group: Pg Header/Footer Header I
NAME "Page
Credits Lrehits
I Group: Cugtarmer Header
STATEMENT OF ACCOUNTS
NAME
ADDRESS
CITYRTZIP
Credits Lrehits
Group: Body Header Arealof 1
ENTERDATE H CREDIT DEBIT
I-Group: Cusztomer Footer
Total Credits/Diebits CREDIT DEBITT
e Cwe You CREDIT
ou Owe Us DEBITE
+
Plain Test "MS Serif ||10 | Obj: ENTERDATE, [0.30, 0.00), (1.37 % 0.17]in.
Figure 7 Tutorial 4 completed report screen

Add Body Group Fields

After the relation is successfully loaded, CodeReporter initiates a new report
with one group, "Body", containing asingle header area. It iswithin this area
that the repeating fields for the composite data file are outputted.

Place CodeReporter into insertion mode for field output objects by selecting
the "Field" button on the button bar or by selecting the OsJecT | FIELD menu
option. Either method will invoke the "Field Objects" floating list box which
contains the fields of all the data files in the loaded relation.

Select the following fields from the INVOICE.DBF data file within the list
box:

CREDIT
DEBIT
ENTERDATE

Tutorials 27

Move the mouse cursor over the "Body" group's report area and click the
left mouse to place the field objects. The objects are placed in the order in
which they were found within the data file. Select the "Field Objects" dialog
box's "Done" button to remove it from view.

The position of the field output objects must be changed to suit the report.
Use the mouse to drag the ENTERDATE field object to the upper left corner
of the report area. The CREDIT and DEBIT fields may also be moved to
the top of the report area and spaced as seen in Figure 7.

Modify Object Settings

Output objects have many default settings, some of which are not aways
applicable. In the case of the ENTERDATE, CREDIT, and DEBIT fields,
thisistrue. ENTERDATE isdisplayed in MM/DD/Y'Y format, when it
should bein MMM DD, CCYY format, and both CREDIT and DEBIT
should not be outputted when their values are zero.

Select the ENTERDATE output object and press the Enter key to invoke its
Object Menu. From this menu, select the OsJecT Settings menu option to
invoke the "Object Settings' dialog in which the date format and size of the
object may be modified.

Use the "Date Format" drop down combo box to select the MMM DD,
CCYY format (or manually type it in), and set the "Width" edit control (in
the Size ared) to be .75 inches. Selecting the "OK" button makes these two
changes and modifies the object appropriately.

Invoke the "Object Settings' dialog for CREDIT output object using the
above procedures. The "Display Zero" radio button in the lower right portion
of the dialog is enabled. Click on the radio button to disable the display zero
option, and select the "OK" button to close the dialog. Repeat these steps for
the DEBIT output object.

Change the Size of "Body"

Usethe FiLE | PRINT PREVIEW menu option to view the report. Natice that the
lines of data in the report appear to be double spaced. Thisisaresult of the
"Body" group being its default size of .33 inches, but the font for the output
objects are only approximately .17 inchestall. To eliminate this double
spacing, the height of the report area may be changed to that of the output
objects.

This may be accomplished in two ways, using the report area's sizing
handles, or by directly setting the size using the "Modify Ared' didog. The
former method is discussed here, while the later method is used below for
sizing the "Customer" group header area.

Use the mouse to drag the lower left or right sizing handle for the "Body"
area so that the area is smaller than the three output objects. When the
mouse is released, CodeReporter attempts to make the area smaller than the
report objects, but displays the warning shown in Figure 8.

28 CodeReporter

Area Error
Setting the area to thiz zize truncates zome objects, cauzing them to be deleted.
Contirue?
Mo
Figure 8 Area error message

Select the "No" button. This causes CodeReporter to size the areato the
smallest size possible without truncating (and deleting) any output objects.
(See the Areas chapter for more information on sizing the area)Preview the
report again (FILE | PRINT PRevVIEW), and natice the lines of the report are now
single spaced.

Add the Customer Group

The report asit standsis not of much use to the casual reader. All that is
listed are some dates and amounts. Without knowing to whom these figures
belong and what they represent, the report does not impart any real
knowledge.

Perhaps the most important information that is needed for this report is an
identification of to whom these credits and debits belong. Thisis done by
creating a second group for the report using the Group | NEw menu option
and placing within this group's areas the information identifying the
customer.

When the new group is created, the "Group Settings" dialog box (Figure 9)
is invoked to allow the report designer the option of changing some of the
default actions of the group.

CodeReporter automatically gives the groups within a report a unique
name. This unique name, however, is not very descriptive of the purpose
of the group. The name of the group may be changed in the "Group
Settings" dialog box by using its "Group Name" edit control. Change the
default group name, Group 2, to be Customer.

Since it is unnecessary for the personal information to be displayed for each
and every credit and debit, a group reset expression is created to output the
areas of the Customer group only when the customer changes. A group reset
expression that uniquely identifies the subset to which each customer belongs
is:

INVOICES->CUSTID

Tutorials 29

Group Settings I
Group Name: Position: 0K
Customer 2
Cancel

Reset Condition:
INVOICES->CUSTID

Easy Expr.
& Swap Header " Reset Page
& Swap Footer * Reset Page Number
" Hepeat Header
Figure 9 Group settings dialog for customer group

Enter this expression within the "Reset Condition™ entry window.

Whenever the customer identification number changes, the new credits/debits
should be associated with a different customer. This condition, known as a
group reset condition, causes the Customer group to be outputted.

Notice that no group reset condition was created for the default "Body"
group. Thisis because without a group reset expression, the "Body" group
resets for each composite record in the datafile -- causing the header areafor
the group to be outputted for every record.

Also set the " Swap Header", " Swap Footer”, and "Reset Page Number” radio
buttons within this dialog. These provided some special handling for the
invoice report. For more information on these settings, see the Groups
chapter.

Select the "OK" button to close the "Group Settings' dialog.

Populate the Customer Header

The customer header area, by virtue of its swap header setting, is outputted at
the top of the page for each new customer. It is therefore necessary to add

30 CodeReporter

Figure 10

the descriptive information for the report as well as for the customer to the
Customer header area.

Create a text output object entitled "STATEMENT OF ACCOUNTS", place
it within the Customer header area and use the ALicN | CENTER menu option
to center it horizontally.

Before the rest of the descriptive fields are added to the Customer
header area, the size of the area must be modified. This may be
done with the mouse and the area'’s sizing handles as described
above, or by using the "Modify Area" dialog box.

This dialog is invoked by clicking the right mouse button within an
empty portion of the Customer area (not the group's information
window).

Modify Area |

Customer Header: Area 1

Suppression Condition:

Easy Expr. |

&+ Allow Page Breaks OK
Height: e I
1.3 = Cance
Modify areadialog

Usethe "Height" edit control (shown in Figure 10), to set the height of the
Customer group to 1.3 inches and select the "OK" button. The header areaiis
automatically resized.

The fields describing the customer are added to this new area through the
"Field Objects’ floating list box. Thisisinvoked using the "Field" button on
the button bar. Use the scroll bar to move the following fields into view:

NAME - The customer's name
ADDRESS - The customer's address

Tutorials 31

CITYSTZIP - The customer's city, state, and zip code.

These fields may be individually selected and dropped into their positionsin
the report as shown in Figure 7, or they may be multiply selected, and
dropped at the same time.

Multiply select the above fields, position the mouse cursor in the Customer
header area and press the left mouse button. Thisinvokesthe "Field Layout"
didog. Instead of automatically selecting the "OK" button as done for the
"Body" group, select the "Vertical" check box. Selecting the "OK" button
this time causes the automatic layout of the three selected fields to be placed
vertically, aligned on the | eft.

Also place two text objects containing "Credits' and "Debits' on the bottom
of the Customer header area above the CREDIT and DEBIT field objects.

Page Header Area

Copy and Paste

Usethe AReA | NEw PAGE HEADER AREA menu option to create a page header
which is outputted at the top of every page within the report (except where
swapped with the Customer group header). As such this area should be used
to briefly describe the report and tie all the pages together.

Sizethe areato .5 inches. This area contains four output objects, one field,
two text, and one expression. Use the "Field Objects’ floating list box (it
should still be visible) and select and drop the NAME field within the page
header area. Close the "Field Objects’ floating list box by selecting its
"Done" button.

The two text objects created for the Customer header area ("Credit" and
"Dehit") may be created manually as done in the customer header and placed
within the page header area.

As an alternate, multiply select the objects in the Customer header and then
use the EpiT | Copy menu option to place a duplicate copy of the objects
within the Windows clipboard. Select EpiT | PAsSTE, position the mouse
cursor within the page header area and click the left mouse button to place
the copies of the text objects.

The fourth output object, the expression, is used to output the page number of
the report. Select the "Expression” button on the button bar (CodeReporter is
put into insertion mode for expression output objects), position the mouse
cursor over the upper right portion of the page header area and press the left
mouse button. Thisinvokes the "Easy Expression” dialog box in which the
expression for the expression output object may be entered.

Typein the following expression (including the quotation marks):
"Page: "+STR(PAGENO(), 3,0)

This expression, which combines both a string ("Page:") and the numeric page
number ("PAGENO()"), may actually have been represented as two objects; a text
object for "Page:" and a separate expression output object for "PAGENO()".
However, since they are logically related and always are moved and

32 CodeReporter

positioned together, it is convenient to combine them into one expression.
Select the "OK" button to complete the placement of the output object.

End of Invoice Summary

Add the Text Objects

Add the Totals

This statement of account lists atotal of the credits and debits for each
customer's account. To make it easier for the customers, this statement also
includes aline that indicates whether they owe the company money, or if they
have over paid.

Since a customer can't at the same time owe and have overpaid, these
statements must be placed in mutually exclusive report areas in the customer
summary.

When the Customer group was created, CodeReporter automatically created
asingle group footer area. Thisareais going to be used to output the
customer'stotal credits/debits. Two additional footer areas (for the "Y ou
Owe Us' and "We Owe You" lines) may be created by using the ARea | NEw
FooTER AREA menu option twice while the Customer group is the
selected group.

Add a text output object to each of the Customer group's footer
areas (See Figure 7)

Total Credits / Debits
We Owe You
You Owe Us

In order to determine who owes money to whom, the total amount
credited and debited to the customer's account must be totaled and
those totals compared. Totals are created through the "Total
Calculations" floating list box which is invoked by selecting the
"Total" button on the button bar. This list box contains the names of
all numeric fields within the composite data file as well as all numeric
calculations. A total output object for the CREDIT field may be
placed by selecting the CREDIT entry in the list box and placing it
within the first footer area of the Customer group. Doing so invokes
the "Modify Total" dialog box (Figure 11) which contains the total's
default values.

Figure 11

Create the
Calculations

Tutorials 33

Modity Total |

Total Name;
TOTALZ

Calculation:
INVOICES->CREDIT

Total Beset Expression:
INYOICES->CUSTID

Easy Expr |

* Sum " Minimum

DK

 Average " Maximum Cancel

Modify totd diaog

The"Modify Tota" has all the appropriate settings (reset expression, total
type) necessary to sum the CREDIT field. The TOTALO name, however, does
not truly describe what is being totaled. Change the name TOTALO within the
"Total Name" edit control to be CREDIT_TOT and sdlect the "OK™ button.

Repeat the above steps to create atotal output object in Customer's first
group footer for the DEBIT field, and use DEBIT_TOT as the name for the
total.

The amount owed can be determined (and outputted) using a calculation
output object that calculates the difference between the CREDIT_TOT total
and theDEBIT_TOT total. This calculation which can (and will) be used in
other dBASE expressions. A calculation output object is created through the
"Calculation Object" dialog box which isinvoked using the "Calculation”
button on the button bar. Use the "New Calc" button to invoke the "Create
Calculation” dialog (Figure 12).

34 CodeReporter

Create Calculation |

Calculation Name:
CREDIT_DEBIT

Calculation Expression:
CREDIT_TOT[] - DEBIT_TOT][]

Easy Expr. Ok Cancel

Figure 12 Calculation object dialog

The caculation name is used to identify the calculation in other dBASE
expressions. Enter CREDIT_DEBIT in the "Calculation Name" edit control
and the following expression into the "Calculation Expression” edit control:

CREDIT_TOT()-DEBIT_TOT()

Sdlect "OK" to close the "Create Calculation” edit control and return to the
"Calculation Object" dialog. Select the new CREDIT_DEBIT() calculation in
thelist box and place it in the second ("We Owe Y ou") Customer group
footer.

When the customer owes the company money, the CREDIT_DEBIT()
calculation contains a negative number. To properly output the third report
area ("You Owe Us") however, this value should be positive. Create an
expression output object in the third (Y ou Owe Us") Customer footer area
(like the page number above) and enter the following expression:

CREDIT_DEBIT() * -1

This expression evaluates to a positive number in the case where the
customer owes the company money.

Suppressing the footer areas

Asit stands now, once the report has completed outputting all the credits and
debits for a customer, the totals for the debits and credits are outputted as
well as aline saying that the company owes them money and that the
customer owes the company money.

Only one of these situations can be correct. The last two areas must be
conditionally suppressed -- a condition based on the value of the
CREDIT_DEBIT()calculation.

A click of the right mouse button on an empty spot in the second footer area
of the Customer group ("We Owe You") invokes the "Modify Ared' dialog

Tutorials 35

box. Inthe "Suppression Condition" edit control, enter the following
expression and select the "OK" button:

CREDIT_DEBIT() <= 0

Thisindicates that if the credits minus the debits is less than or equal to zero
(the customer owes the company money) the second area ("We Owe You")
should not be outputted. When the company owes the customer money the
CREDIT_DEBIT() calculation returns a positive number and so the report area
is outputted (i.e. not suppressed).

The third area should use the following suppression condition:
CREDIT_DEBIT() > 0

Thefina step in thistutorial report isto modify the numeric format of the
numeric output objects in the Customer group's footer areas (two totas, a
calculation, and an expression). For each output object, invoke its Object
Menu (right mouse click on the object or pressing the Enter key while
selected) and choose the OBJeCT SETTINGS menu option. Change the
following settings:

1. "Number of Decimals® edit control. Change this from the default setting
of zero (0), to two (2).

2. "Numeric Type" radio buttons. Set the output object to be displayed as a
currency.

View the Report

Use the FIiLE | PRINT PREVIEW menu option to view the pages of the report. The first three should
appear like those in Figure 13.

36 CodeReporter

ST, = Ila
4

TETEHEET OF 220 1°E™: TETEHEET OF 220 1°E™:

frin-el

ECALUS-L) T, W 1L

Jadia Jadia Lol
JECLE
LEL Y
[HT}
s
e
Ridds
il
Tod s Dan, LR LY Tod s Dan, H P
Wou ez iz Tl - Wou ez iz T |
B

1 L e s =

4

TETEHEET OF 220000

Lol
M LT
i
2ELL
[
Tod L Lo, .08 FiH s
Wou Zeez s rn -l

Ll 2

Figure 13 Preliminary output

Tutorials 37

Specifying a Sort Expression

Asit can be seen in the first three pages of the report (Figure 13), the debits
and credits for the first customer, John Q. Public, are broken up by those of
Customer OMine. Thisis because CodeReporter is retrieving the records
from the composite datafile in natural order (i.e. the physical order of the
composite datafile).

Thefina step in creating this report is to order the records in the composite
data file according to the customer'sid number which is stored in the
CUSTID field.

Use the REPORT | SORT ExXPRESSION menu option to invoke the "Easy
Expression” dialog for the sort expression. Enter the following expression
and select the "OK" button:

INVOICES->CUSTID
When the report is displayed a second time, this new sort expression is taken

into account and al of the credits and debits for John Q. Public are retrieved
together before those of Customer O'Mine.

Chapter 1: Designing a Report 39

1. Designing a Report

Designing areport is athree phase cycle. Thefirst phaseis figuring out what
the report should contain and look like. The second and third are laying out
the report and obtaining a sample report. If the end product after the third
cycle is the same as what was designed in the first phase, the report cycleis
done. It is more often the case that the implementation cycles of the report
need to be repeated many times until the report is "perfected”.

It is even more often the case that the initial concept of what should be in the
report or how it should be organized radically changes once the report is
implemented. Thisusually occurs as a result of insufficient consultation and
planning prior to the attempt to implement the report.

This chapter discusses an organized approach to the design phase of areport.

Report Purpose

It isimportant in any report to decide exactly why the report is being
designed. Without a clear idea of why the report is necessary in the first
place, it is quite easy to come up with anice, new, crisp report that istotally
useless.

If, for example, the Inventory Control department wants to know how many
widgets they need to reorder, and they get areport that tells them how many
widgets were used last year, they'll be quite upset, and the report will need to
be redone.

A Statement of Purpose is a brief description of the requirements of a report.
Thisis generally aline or two that specifies:

Who is requesting the report,
What information is required,

What are the limitations of the report (eg. between which dates, for
which products, for which location, etc.)

Any specia formatting

It can be as simple as "Personnel needs a list of all peoplein the
EMPLOYEE data file", or as complex as "The Board of Directors needs a
two year summary of the revenue and expenses for each store of all the
companies in the system -- sorting alphabetically by company and store
name."

40 CodeReporter

Creating this statement of purpose helps clarify the requirements of the
report, and can be used later to verify that the report shows what it was
required to show.

Prototype on paper

Determining how the report should physically look is the second most often
modified aspect of areport after its content. Deciding early how the report
should look will save countless comments like, "That's ok, but | really think
this should be over here" and will greatly accelerate the actual
implementation of the report.

The simplest way to obtain the format of the report is to prototype it quickly
on apiece of paper, filling in sample information. In the prototype, the
placement of information is more important than the accuracy.

Exactly where any piece of information is placed is often a combination of
company policy and personal taste -- so there are no rules. Some companies
like page numbers at the top, while others like them at the bottom. Try out a
couple different types of designs until a good one is found.

The most important aspect of a prototypeisthat it fully satisfies the
requirements of the Statement of Purpose. If it does not, the design needs to
be revised.

Figure 1.1 shows a prototype report for the following Statement of Purpose:
The Alumni Association needs a report that shows the total amount of
money donated this year and an alphabetical list of the names, addresses,
contributor identity number and monetary amounts of all people who have
contributed $1,000 or more so far this year.

Chapter 1: Designing a Report 41

Alumni Association
Patron's List
January 1, 1993 to May 21, 1993

Tota Alumni contributions: $XXxxxxx
Patron Contributor ID Amount
Adams, John 4321-34-1234 $1,000
123 West 4th Street, AnyTown, ST, 55212
Baker, John 4321-34-1234 $9,000
123 West 4th Street, AnyTown, ST, 55212
Cramford, John 4321-34-1234 $6,000
123 West 4th Street, AnyTown, ST, 55212
Denver, John 4321-34-1234 $6,000
123 West 4th Street, AnyTown, ST, 55212
Evans, John 4321-34-1234 $3,000
123 West 4th Street, AnyTown, ST, 55212
Finnigan, John 4321-34-1234 $15,000
123 West 4th Street, AnyTown, ST, 55212
Goodbody, John 4321-34-1234 $2,000
123 West 4th Street, AnyTown, ST, 55212
Hamilton, John 4321-34-1234 $1,000
123 West 4th Street, AnyTown, ST, 55212
11, John 4321-34-1234 $5,000
123 West 4th Street, AnyTown, ST, 55212
Jorganson, John 4321-34-1234 $7,000
123 West 4th Street, AnyTown, ST, 55212

Figure 1.1 Prototype (Sketch) Report

The prototype report in Figure 1.1 completely satisfies the statement of
purpose. It liststhe originator of the report at the top of the report, the total
amount contributed by the alumni in the "Total contributions line, and the
names, addresses, and contributor identity numbers in alphabetical order.
Once this prototype report has been approved by the originator of the report,
in this case the Alumni Association, the building of the report may begin.

Analyze the prototype

The completed prototype lists all the essential pieces of information that are
required in the report. It would be tempting at this point to move directly into
CodeReporter to implement the report. 1t isimportant, however, that

42 CodeReporter

additional planning take place in order to be the most productive when using
CodeReporter.

Thefirst step isto analyze the prototype and determine the type of each
element of the report. Does this piece of the report change during the report?
Can that piece change each time the report is run? Isthis amount calcul ated?
On the prototype report, figure out what the pieces of the report are, and label
them (asin Figure 1.2) with terms similar to:

Db fidd. Thisinformation comes from a database

Graphic. Thisisapicture stored on file. Don't include letter head, etc.
that are not actually outputted by your printer.

Static text. Thisistext that does not change within the report.

Calculated Text/amount. This information combines two or more report
elementstotal. Thisinformation summaries numeric data. lines.

Specia. Elements like the page number, or the current date/time which
don't fit in any other category.

Chapter 1: Designing a Report 43

Alumni Association «— static Text

Patron's List Date of Report

Line

‘ & January 1, 199to May 21, 1993

Static Text

Total of all amounts not
Total Alumni contributions; XXXXX <— only those listed below
: (Probably Look Ahead)

Static Text
Patron / \ Contributor ID

Amount

Db Fields
Adams, John {/ WLN\;‘\\4321-34-1234 $1,000
123 West 4th Strét, AnyTwn, ST, %5212 /

Db Field or Total

Baker, John 4321-34-1234 $9,000
123 West 4th Street, AnyTown, ST, 55212

Cramford, John 4321-34-1234 $6,000

123 West 4th Street, AnyTown, ST, 55212

When the report is actually created with CodeReporter, these labels will
accelerate the placement of the report el ements.

Finding common report areas

On a separate copy of the report prototype, draw rectangles around the parts
of the report that form a distinctive unit. A distinctive unit could be a part of
the report that only prints at the beginning or end, a section that repeats on
each page, a section that repeats occasionally throughout the report, or a
section that repeats continually throughout the report.

These sections, called areas, determine when and why common parts of the
report are outputted together. Deciding on the areas of areport early onin
the design helps clarify the design of the report -- assisting in the final layout
of the report.

Once the rectangles are drawn, write a brief note describing when the area of
the report is outputted. Figure 1.3 shows the areas necessary for the example
report, and a brief explanation why each areaisasitis.

44 CodeReporter

Alumni Association

Patron's List This area is only
outputted at the
January 1, 1993 to May 21, 1993 beginning of the

Total Alumni contributions: $XXXxXxxx

report.

Adams, John

Cramford, John

Denver, John

123 West 4th Street, AnyTown, ST, 55212

123 West 4th Street, AnyTown, ST, 55212

123 West 4th Street, AnyTown, ST, 55212

123 West 4th Street, AnyTown, ST, 55212

This area is outputted
at the top of each page,
except for the first page
where it follows the
title of the report.

Contributor ID Amount

This area is outputted
once for every patron

4321-34-1234 $6,000

4321-34-1234 $6,000

Locating report elements

Having areport prototyped may be the easiest part of obtaining a report.
Figuring out how to obtain the information in the report can often be
formidable. It requires aknowledge (or alist) of all the data files that might
possibly contain information in the report.

The static text elements of areport may be ignored, since they are entered
directly into CodeReporter when the report islaid out. Lines, frames, and
"gpecial” elements may also beignored at this point, since they, too, are
created with CodeReporter. That leaves the elements that are from data files
and graphics.

Creating alist of these extra report elements, and locating the filesin which
they may be found, defines which data files and graphic files need to be
included in the report. Doing this ensures that essential files for the report
are found, while making sure unnecessary files are not included.

Thelist of report elements that use information from a data file for Figure
llare

Pxxxxxxx - the total amount of money contributed by alumni
John Q. Public - the patron's name

Chapter 1: Designing a Report 45

123 West 4th Street, AnyTown, ST, 55212 - the patron's address which
is made up of the street address, city, state, and zip code

4321-34-1234 - the patron's contributor identity number, and
$Hxxxx* _ the total amount of money the patron donated

Depending upon the way the databases are laid out, this could be a straight
forward report or amore complex report. In the smple case, the data file
might look like PATRONS.DBF Figure 1.4. All of the datafile fields
necessary in the report are included in this one data file, so the report would
in essence be alisting of this one datafile.

Figure 1.4

Usually, the information for areport is not as nicely laid out. It is often the
case that information is spread out through severa related datafiles. Even

for this simple case, the data files necessary might look like those in Figure
15.

Figure 1.5

In most cases, datawill be found in more than one datafile, so for the rest of
this chapter, Figure 1.5 will be used as the example datafile.

46 CodeReporter

Thelist of report elements that depend upon data filesis then linked up with
the data files that contain that information. Table 1.1 shows such alist.
Notice that some elements, such as the patron's name, are built using more
than one field, while others, such as the patron's contributor identity number,
are found in more than one datafile. List them al, because they may al be
required during the layout of the report.

Element Data file fields for element
BXXXXXXX CONTRIBS->AMOUNT
Adams, John ALUMNI->LAST_NAME, ALUMNI->FIRST_NAME
123 West 4th Street, AnyTown, ST, 55212 ALUMNI->ADDRESS ALUMNI->CITY, ALUMNI->STATE,
ALUMNI->ZIP
4321-34-1234 CNTRBTOR->CNTRBID, CONTRIBS->CNTRBID
Pk CONTRIBS>AMOUNT
Table1.1

Designing the Relation

The datafile fields listed are the ones necessary for the report. If they all are
found in the same datafile, this section may be skipped, and the report may
be laid out using CodeReporter.

As stated earlier, most reports require information from several datafiles.
The process of tying, or linking, these separate data files together is the heart
of relational databases. The relational database model and the process of
creating arelation using CodeReporter is discussed in-depth in Chapter 2.

Using the list of datafiles and their fields, draw lines between the common
fields. Thisvisualy illustrates the necessary linkages between the datafiles,
helps determine the type of relationship that exists between the data files, and
may help identify the report's top master datafile.

Noticein Figure 1.6, the identification of the left to right relation. There are
(or may be) more than one contribution recorded in the CONTRIBS.DBF
datafile for each person contributing. Each alumnus only has one record in
the CNTRBTOR.DBF datafile, that is, all contributions made by an
alumnus are recorded under only one number.

Chapter 1: Designing a Report 47

* tag field

Figure 1.6 Designing a Relation

Identify the Tags

CodeReporter can link data files only when there are index tags available. A
tag defines a quick method of locating the records. When two datafiles are
linked, the first data file uses atag to quickly locate the appropriate
information in the second datafile. The tags are generally created at the
same time as the data files.

Make a specia note of each datafilestagsinthe relation list. If the datafile
has a compound tag (containing more than one field), write the tag name at
the bottom of the field list and mark it asatag. Change the lines to arrows if
the relation points to atag field.

If alinein the relation diagram points to afield that does not have a tag built
upon it, it may be necessary to erase the relation line or to build atag on the
field using another database tool. There only needs to be one link to a data
filefor it to be included in the relation.

Determining Top Master Data File

Once this diagram is completed, determine the best flow for the relation.
Place the datafilesin atree diagram with one data file at the top of the
diagram, with the rest of the data files below in the order dictated by the
linkage lines. In many relations, the data files may fit together in many
different ways. The following guidelines may be used to determine best flow
for arelation:

48 CodeReporter

Each lower data file must have a tag pointed to by the higher datafile.

Many-to-one and one-to-one relations are of better design than one-to-
many or many-to-many relations

Figure 1.7 shows the different tree diagrams possible using the relation
diagram in Figure 1.6. Note the that the first relation has no one-to-many
relations and so technically may flow better than the other two. Depending
upon the nature of the report, however, it may be necessary to use one of the
other relation trees.

For example, if the report requires alist of all alumni, not only the ones that
contributed, it would be necessary to use the relation that has ALUMNI on
the top. See the Relational Reporting chapter for more information on the
implications of a relation upon the outcome of areport.

| CONTRIBS | | CNTRBTOR|
to CNTRBID to CNTRBID
CNTRBTOR| "¢ CONTRIBS |9
to ALUMID to ALUMID
ALUMNI | tag ALUMNI | tag
Many to one to one Oneto many and
oneto one
| ALUMNI |
to ALUMID
CNTRBTOR| ¢
to CNTRBID

CONTRIBS | tag

One to one to many
Figure 1.7 Relation Trees

Layout the report

Once thistype of diagram is created -- assuming all the data files necessary
for the report can be tied together -- the report may be laid out. The rest of
this manual discusses the actual implementation of arelational report.

Validate the report

Once the report has been designed using the areas, relations, and report
elements discussed in this chapter, check the report against the original
Statement of Purpose to ensure that the final report does indeed fulfill the
origina requirements. |If the report passesthisfinal check, the report cycleis
finished and the report design is complete.

Chapter 2: Relational Reporting 49

2. Relational Reporting

Relations

Relationa reporting isthe act of creating a report which uses more than one data
file. These diverse datafiles are integrated in the report to produce a cohesive
whole "composite data file" upon which the report is based. Relational reports
generaly take information from severa affiliated data files and output themin a
more readable fashion. Relational reporting, put smply, is aprocess of creating a
report which integrates two or more datafiles.

When creating arelational report using more than one datafile, it is necessary to
locate accurate and appropriate information in all the datafiles. That is,
information found in arecord in one data file must be logically consistent with
the records found in the other datafiles. For example, the bill for customer
#2345, Jane Smith should not be sent to the address of customer #4321, Peter
Rodriguez.

In order to ensure that appropriate information is retrieved from al the data files
during the report, the manner in which information is obtained must be explicitly
described when the report is designed. When this description is created, the data
filesare said to be linked, or related. A relation says, "When the report uses a
record in this data file, use this information from it to locate arecord in that data
file that contains the same information."

The datafiles arerelated in a hierarchica Master-Slave relationship. The
controlling datafile is called the master datafile, and the controlled data file (the
one used for lookups) is called a dave datafile.

Breaking the relation statement down hel ps define the necessary components of a
relation.

"When areport uses arecord in this datafile" -- This defines the master data
file.

"use thisinformation from it" -- thisis a dBASE expression that is evaluated
for each record of the master datafile. This evaluated expressionis used as
asearch key into the dave tag. Thisexpressionis caled the Master
Expression.

"to locate arecord in that data file that contains the same information” -- this
defines the dave data file used for the lookup, and the dave data fil€'s index
ordering that is used to locate the corresponding record. The index ordering
used in the relation is called the dave tag.

50 CodeReporter

A relation between two data files only operates one way. One datafileisused to
look up information for another datafile. The one datafileis controlled by the
other, whose records are only retrieved as dictated by the other datafile.

In other words, one data file has some information in it that contains areference
to information in another datafile. If the two datafiles are related, the master
(first datafile) tells the dave data file to locate arecord in the slave data file that
contains the sameinformation. The master datafile, instead of only having a
reference to the information in the dave data file, then can use the actual
information located in the dave data file and output it.

SALES.DBF CUSTOMER.DBF

o T]
sauio Vs]

Master Slave

Figure2.1 Simple Relation

Without arelation, or linkage between SALES.DBF and CUSTOMER.DBF in
Figure 2.1, how would areport of saleslist the names of the people to whom the
sale was made?

With arelation, al the fields of all the data files may be considered a part of a
single datafile called the composite datafile. The composite data file does not
actualy exist on disk -- CodeReporter does not physicaly create afile containing
all the information of al the related data files-- but is a high level way of
describing the intricate way CodeReporter maintains the positioning of the
individual datafiles.

Once arelation is made, the composite data file contains al the fields of al the
datafilesintherelation. The information in the fields of the composite data file
isthen kept accurate by CodeReporter during the output of the report.

Chapter 2: Relational Reporting 51

SALES.DBF CUSTOMER.DBF

|‘R 65 00 ||Q1?4 |

Lwest_Davie |

Master

One to One Correspondence
Exact Match

|1?'24 ||1?'24

|4'221 ||4'2?1 | Rawii_Fatim
[ssaz Jlesaz 1 Diones 200 It microsqud

Lotz [Sancers el [tamiine &
$102 99 ||661? ||661? | West Davie

Composite Data File

Figure 2.2 Composite DataFile

While the composite data file contains all the records of the master datafile, it
does not necessarily contain al the records of the lave datafile. Thisisadirect
result of the Master-Slave relationship. When the relation is used, the records of
the master data file are used to locate corresponding records in the slave data file.
However, the master datafile is not required to have references to al the records
inthe dave. Thedaveisonly used as alookup.

The steps taken internally in CodeReporter are:
1. Position to arecord in the master datafile,

2. Take the common information in the master datafile (defined by the master
expression)

3. Search for arecord in the dave data file with the same information (thisis
now the composite record),

4. Repeat steps 1 - 3 until there are no more records in the master data file.

It becomes apparent that if the master doesn't reference a particular record for the
dave, that dave record is not included in the composite datafile. Thisiswhy it
isimportant during the design of the relation, that the statement of purpose for the
report be take into account. If the wrong top master data fileis chosen, the
results of the report can be quite different than what is desired.

This occurs in the composite data file of Figure 2.2. Noticethat in the
CUSTOMER.DBF, thereis an entry for Jim Sanders (Customer number 9199).
However, since the master datafile, SALES.DBF does not reference customer
9199, Jim Sandersis not included in the composite datafile.

52 CodeReporter

It can also be the case that the dave data file does not have a corresponding
record for the master. The master data file requests information from the dave,
but the dave hasn't got arecord containing that information.

When this occurs, CodeReporter can do one of three things -- depending upon the
way the relation was set up.

1. Blank Fields. CodeReporter fillsin the fields of the dave data file with
spaces. Numeric values contain azero value. Thisisthe default action.

2. Skip Record. The composite record isignored. Both the master and dave
records are skipped by the CodeReporter asif neither one existed.

3. Stop with Error. Thereport is stopped and an error message is displayed.
This may the report should be aborted.

Complex Relations

Using just two datafilesisfineif they contain al the information needed for the
report. If, however, two data files do not suffice -- if there are three or more data
files necessary for the report -- acomplex relation is needed.

A complex relation is arelation that contains sub-relations. That is, adave of
one datafile must act as amaster datafile for alower level dave.

A master datafile can be linked to more than one dave datafile, and a slave data
file canin turn be used as a master datafileto link in yet ancther slave datafile
for further relations. This allows the creation of arelation "tree”, with al the
relations descending from asingle top level master datafile.

Terminology at this point can get somewhat confusing. As a convention the
term "top master data file" refers to the top data file in the relation tree, which
the main data file of the report. "Master data file" refers to the controlling data
file in the relation currently being discussed.

All the relations descending from the top master data file as a unit are called the
relation set.

The diagram 2.3 in the CodeReporter manual below shows a complex relation
wherethe STUDENT.DBF datafileis the master of the ENROLL.DBF datafile,
which isthen a master of the COURSE.DBF datafile.

Relation Types

CodeReporter supports three different types of relations. Each different relation
type accesses data from the dave datafile in a different manner. The three
relation types available in CodeReporter are: exact match, scan, and approximate
match.

Exact Match Relations

An exact match relation defines a one-to-one correspondence between the master
and slave datafiles. Each record from the master data file can have only one
corresponding record in the dave datafile. An exact match relation will aways

B

Chapter 2: Relational Reporting 53

return the first corresponding record in the slave data file, even if more than one
record matches the evaluated master expression. Thisis a one-to-one relation.
One record in the master data file locates one record in the dave datafile.

In other words, for each record in the master data file, CodeReporter searches the
dave datafile index until it finds atag entry with the exact contents as the
evaluated master expression. The search stops when the first record match is
found, or until the entire dave tag has been searched.

In general, an exact match is best used in conjunction with a slave tag that is
unique.

The diagram shows an exact match relation between the SALES.DBF and the
CUSTOMER.DBF.

Approximate Match Relations

The second type of relation is the approximate match relation. Thisissimilar to
the exact match relation in that it only permits one match for a master record.
The only differenceis the way it behaves when an exact match is not found in the
dave datafile. If the match fails, the slave record whose index key appears next
in the dave tag is used instead.

54 CodeReporter

4 Top Master data file
Master of ENROLL

654321 en Hirshfeld 30 One to M any:

Sandra Scan Relation
ar
James
David

[Tvler __J[43

Slave of STUDENTS

Master of COURSE

r
Bernie
g
George EM- -
Albert
Scott -
336544 29 Slave of ENROLL
Cameron
Reginald || Page |
Eric

2
)
=
=

> T [z =
: :

CMPT389 Intro to Databases ...
CMPT411 Computer Graphics
MATH114 Intro to Calculus |

Many to One: [on102 W intro to Macro Econ .
Exact Match

Figure 2.3 Complex Relation

Chapter 2: Relational Reporting 55

Approximate match relations are generally quite rare and are usually used only
when arange of valuesin are represented in the data file by asingle high value.

EMP_FILE.DBF BENEFIT.DBE
EMP_NAME YEARS YEARS BENEFIT
[ADAMS,J. | [6] [5] [25000 |
[ADAMS, L. | [15] > 10] [35000 |
[cook, P. | [2] ®[15] [50000 |
[FRANK,B. | [3] [20] [75000 |
[HENKE, D. | { 20 | [999] [1000000 |
[MOORE, E. | [25]

Figure 2.4 Approximate Match Relation

An approximate match relation is shown in Figure 2.4. In this case, the
employees retirement benefits are determined by the number of years that they
put into the company. Instead of making an entry for each possible year served,
the BENEFIT.DBF only lists the upper limit for each pay out level. Thefirst pay
out level is from zero to five years, the second is six to ten, et cetera until the
maximum entry of twenty-one years and above pays out 100,000.

If an exact match is not found using an approximate match relation, the record
used from the slave data file is not necessarily the record closest to that of theg
master expression, but the first record with a key value greater than the mastq
expression.

In Figure 2.4, a master expression value of six looks up the tag entry for ten,

even though six is numerically closer to five.

Scan Relations

Scan relations define a one-to-many correspondence between the master datafile
and the dave datafile. This meansthat for each record in the master datafile,
CodeReporter finds al the matching records in the dave datafile, not just the
first.

Figure 2.5 uses a scan relation to relate the master data file STUDENT.DBF with ENROLL.DBF.
Thisrelation would include every classin which astudent is enrolled. In this example, the scan
relation produces three composite records using a single record in the master datafile.

=

56 CodeReporter

Master Data File Slave Data File
STUDENT.DBF ENROLL.DBF
ID F_NAME L_NAME AGE STU_ID C_CODE
654321[Ken |[Hirshfeld][30] [157933[ECON102]
[123344[Sandra_|[Donaghey][32] 234533 cMPT389]
[873454[Barry __ |[Webber |[22] (423233 MATH114|
[4232323[Harvey |[Tyler (43 423233 CMPT411
46 [] [234533[MATH114]
B 125753[CMPT411
42323 MATH115
: : 873454| cpanT
Composite Data File | 1878459 crpmrat |

[873454[Barry __|[Webber [873454[CMPT201]
[423233[Harvey |[Tyler (23] [423233[MATH114
[423233[Harvey |[Tyler (23] [423233[CMPTA411
(423233 Harvey |[Tyler |[43] [423233[MATH115
[463723[James _|[Miller I[34] |
i 77— 25

Three Entries
In Composite Data Flle

er

Figure2.5 Scan Reation

Master of multiple slaves

A complex relation may aso include one master data file and two or more dave
datafiles. That is, two dave datafiles may be related to the same master data
file. In most ways, this configuration is exactly the same as any other -- the
master expression for each relation is evaluated for the current record in the
master data file, and each result is used as alookup key into each dave tag.

When a scan relation is not involved, the relation behaves in the standard manner
-- the composite record includes the information from the master data file's record
and from each dave datafile. It does not matter whether the relations are exact
match or approximate match. See Figure 2.6.

However, when a single master data file has two or more dave datafiles each
with scan relations, CodeReporter performsthe relation in adightly different
manner. The error action for each of the master's scan relations must be set to
blank fields because the complex relation is performed on each scan relation
individually, leaving the other scan relations blank.

Figure 2.6 illustrates a single master with two datafiles, first with exact match
relations and then with scan relations.

Chapter 2: Relational Reporting 57

Relation Set Composite Data Files

MASTER

laaa | [123 | As Exact Match Relations
AAA 123 AAA APPLE 11123 98765
SLAVE1

LAAA—I LAEELE—' Master Slave 1 Slave 2

AAA ORANG&

AAA PEACH As Scan Relations

[aaa |[123 |[aaa |laPPiE
SLAVE? (ana [123 J[aan IloraneH []

li2s | los765 || |[ama [z | AAA_ || PEACH

l123 | {76543 || |[aaa 12z | I |[123 {98765 |

lizs Jls2100 || |Cama [z I |l123 || 7z6543 |
laaa |[123 || I |l123]{32100 |
Master Slave 1 Slave 2

Figure 2.6 Complex relation with one master and two daves

A scan relation may not be mixed with exact or approximate match relations
when a single master datafile has two or more slave datafiles.

Creating Relations

Thefirst step in creating areport is to create the backbone relations for the
report. It issuggested for any report that may involve severa datafiles that the
procedures described in the Report Design chapter be followed and that the
relation be sketched out on paper before creating them in CodeReporter.

Selecting Top Master Data File

Path Names

A new relation may be created by selecting the FiLe | New menu option. The
"Select Data File" dialog box isinvoked (a Windows 3.1 common "File Open"
diaog), prompting for the top master datafile. Use the directories and file name
list boxes to locate the top master data file for the report and open it by selecting
the "OK" button.

CodeReporter, by default, saves the full path namesto the datafilesused in a
report within the report file. Asthe report isloaded, the datafiles for the report
are also opened. If the data files have been moved or deleted, CodeReporter is
unable to locate the non-existent files. When this situation occurs, use the FILE |
OPEN WITH PATH menu option. After areport file has been selected,
CodeReporter pauses and prompts for the directory in which all the data files of
the report may be found. This new directory is then saved with the report.

Once selected, the top master data file for the report may not be changed. If
another top master data file is desired, the report must be re-created from the
beginning.

58 CodeReporter

Bit Optimized Query Technology

CodeReporter uses Sequiter's Bit Optimized Query Technology (BOT) to
perform high-speed querying of the composite datafile. Thisis done by
comparing the query expression with the tag sort orderings of the top master data
file. If the query matches the tag expression, the tag itself is used to filter out
records that do not match the query.

Thisresultsin lightning quick performance, even on the largest of composite data
files, since only necessary records are actually physically read from disk.

See, below, for information on how to open tags for the top master datafile.

In order to maximize the chances BOT can be used, it is suggested that al the
possible tags for the top master data file be opened.

The Relation Dialog

Slave datafiles may be added to the relation set by using the "Relation” dialog
(Figure 2.7) which isinvoked from the RELATION | MobIFy menu option. This
didog visualy showsthereation asit is assembled -- with lines showing where
the linkages occur. The datafile at the upper left of the "Relation” dialog isthe
top master. Asdatafiles are added to the relation set, a button is added below
and to theright of its master -- visualy creating the relation "tree." When more
daves are added to the same master, their buttons are added directly below those
of previoudy added daves

| Relation

Mew Slave Delete Slave Modify Link Cloze

B

Figure 2.7 Modify Relation Dialog

Adding a Slave Data File

A dave datafile may be added to the relation set by selecting its master and
choosing the NEw SLAVE menu option, or double clicking the master's button. It
makes no difference whether or not the master data fileis already adave of
another datafile. The "Select Data File" dialog isinvoked to locate and open the
dave datafile. Again, usethe file name and directory list boxesto locate the
dave datafile.

Chapter 2: Relational Reporting 59

Modifying a Relation

Enabling BOT

Master Expression

The"DataFile Link" dialog (Figure 2.8) is used to define and modify arelation
between a master and a dave datafile. Thisdiaog isautomatically invoked
when anew daveiscreated. It may beinvoked at alater point for modification
of the relation by selecting the dave data file's button and choosing the MobiFy
LINK menu option, or by clicking on the dave data file's button with the right
mouse button.

If the selected data file button is the top master datafile for the relation, and
MopIFY LINK (or the right mouse button) is used, the "Master Index Files' dialog
isinvoked. Thisdialog may be used to open and/or close index files for the top
master datafile -- thus enabling the report to take advantage of BOT.

If therelation is new, CodeReporter fills the "Data File Link" dialog with default
information, as shown in Figure 2.8. Before the new relation is accepted, both
the "Master Expression” edit control and an existing tag must be selected.

The master expression is a dBASE expression, based on the master datafile (or
datafiles higher in the relation tree), that is used as alookup into the Save tag.
When the report is run, this expression is evaluated for each record retrieved for
the master data file, and its results are used to locate arecord in the dave data
file viathe specified tag for the dave.

Thisexpression is generaly as simple as afield from the master data file, but
may be more complex -- involving fields from higher datafiles in the relation tree
and/or dBASE functions.

60 CodeReporter

D ata File Link
T |
Master Data File: Slave Data File:
ACODEREMEXAMPLESAINVOICES.DBF -ACODEREMEXAMPLES\CUST.DBF
EAIias: INVOICES | Alias: CUST
| |

Master Expression: Slave Tag
Easy Expression ._.Existing_'l.'ags
: Relation Type Error Action
| Open Index
E " Scan Relation & Blank Fields
i i+ Exact Match Relation ¢ Skip Record Close Index
i " Approximate Match Relation Stop Yith Error
oK Cancel

Figure 2.8 DataFileLink Dialog

A master expression may either be typed manually into the "Master Expression”
edit control, or the "Easy Expression” button may be used to simplify the
expression entry.

For more information on dBASE expressions and the "Expression Entry" dialog
box, see the Expressions chapter.

Selecting a Tag
The tags for the dave production index file (if there isone) are listed in the
"Existing Tags' list box. When ataginthelist is selected, information about it,
including its sort ordering, is displayed in the "Slave Tag" edit control. If usedin

the relation, the dBASE expression listed for the tag should correspond to the
master expression for the lookup to function correctly.

Opening An Index

If thereisn't atag that corresponds to the master expression, or if the dave data
file does not have a production index file, the "Existing Tags' list box only
contains the 'None' entry.

Tags from index files other than the production index file may be opened and
used in the relation by selecting the "Open Index" button. This button invokes
the "Select Index File" dialog box which may be used to locate and select the new
index file.

The CodeReporter executable is index file specific and may only open index
files which are compatible with its index format. Reports may not mix index fije

Chapter 2: Relational Reporting 61

formats. Other index file formats require a different index specific
CodeReporter executable. See the Getting Started section of this manual for
using the appropriate CodeReporter DLLs.

Once an index file is opened, its tags may be selected for the relation from the
"Existing Tags' list box.

Index files containing unused tags may be closed using the "Close Index" button.
When sdlected, the "Close Index" button closes the index file associated with the
selected dave tag, and removes al other tags for that index file. However, since
having the added open index files does not degrade performance, it is
unnecessary to close them.

Slaves Without Tags

CodeReporter alows an aternate method of performing lookups that does not use
tags from the dave datafile. Instead of having the master expression evaluate to
alookup key, it may evaluate to arecord number. This record number specifies
the physica record number of the dave record retrieved from the dave datafile.

This method is mainly useful on static unchanging dave datafilesthat are never
packed. This method has the advantage of being faster and more efficient than
performing seeks on atag.

To use this method, smply select the "None" option in the "Existing Tags' list
box. Notag isselected, and the master expression is then taken as arecord
number.

It isthe responsibility of the report designer to ensure that the record number for
the evaluated master expression references the appropriate dave record number
for the master datafile record.

If the evaluated master expression contains a reference to a non-existent
record number (<= 0 or > the number of records in the slave data file),
CodeReporter generates a -70 error as the report is generated.

Setting the Relation Type

The Error Action

The"DataFile Link" dialog is used to set the type of relation between the master
and dlave datafiles. The different relation types specify how records are
retrieved from the dave datafile. See Relation Types, above, for information on
the different types of relations.

The default relation type, an exact relation, may be modified by selecting either
the "Scan Relation" or "Approximate Match Relation” radio buttons.

The "Error Action" radio buttons control how CodeReporter acts when alookup
into aslave datafile failsto locate arecord. For more information on error
actions, see Error Actions, above.

The default error action, blank fields, may be modified by selecting either the
"Skip Record" or "Stop with Error" radio buttons.

When an approximate match relation is defined, the only error action available
is "Blank Fields".

Moving a Slave Data File

62 CodeReporter

Asshown in"Figure 2.7", the buttons representing the datafiles in the "Relation”
dialog contain movement handles. The dark gray square in the upper right corner
of the data file button may be used by the mouse to move a dave datafile above
or below a dave of the same master.

The only advantage to moving aslave higher or lower in relation to its master
datafileisthat lower level daves may use the fields of higher level davesin the
master expression for its relation.

In Figure 2.7, the STORES - EXPENSES relation may use al the fields of the
COMPANY .DBF, STORES.DBF, and SALES.DBF data filesto defineits
relation. The STORES - SALES relation, on the other hand, may only usefields
from the COMPANY .DBF and STORES.DBF data filesin its master expression.
A datafile may be moved in relation to its master data file by pressing and
holding its movement handle with the left mouse button and dragging it higher or
lower. If adatafile may not be moved, dragging it to a new location has no
effect.

Sorting the Composite Data File

When information is entered into datafiles, it is usually donein arandom
manner. All the salesfor customer #1 are not always entered before the sales for
customer #300. However, reports generally require the information be outputted
inalogica order -- aphabetic, numeric, by date, etc.

CodeReporter provides away to sort the composite data file, via the sort
expression. This dBASE expression is evaluated for each composite record, and
the results (and the composite records) are retrieved in the new logical order.
This processis called sorting the composite datafile.

Sort Expression

Entering a Sort

The sort expression is simply a dBA SE expression that can incorporate any field
or combination of fields in the composite datafile. Figure 2.9 illustrates the
affects of asort expression. Notice that the sort expression incorporates afield
from the master data file aswell as the dave datafile.

The sort expression is entered using the "Easy Expression” dialog. Thisdialog
may be invoked from the REPORT | SORT EXPRESSION main menu option.

For more information on dBASE expressions and the "Easy Expression” dialog
box, see the expressions subsection of the Objects chapter.

Chapter 2: Relational Reporting 63

Sorted, Composite Datu Files

Figure 2.9 Sorting a Relation Set

Query the Composite Data File

A query isalogical expression which is used to create a subset of the composite
datafile. Thisquery expression creates afilter through which composite records
of the relation must pass. Only the records that meet thisfilter criterion are
included in the report.

That is, this expression is evaluated for each composite record of the composite
datafileand if it resultsin a. TRUE. value, the record isincluded in the report,
otherwise it isignored. For example, if it was required that the relation described
in Figure 2.9 only include the people in room A994 whose name began with an
'S, the queried composite datafile (in natural order) would be that of Figure
2.10.

Entering a Query

The query expression is entered using the "Easy Expression” dialog. Thisdialog
may be invoked from the REPORT | QUERY EXPRESSION main menu option.

64 CodeReporter

MASTER | caz4l(678 || 678 |[Smith. J
oOM | ca24)l 678 |678 |[Hunter, N
M
678 _CA24J|_618_||_628 Gruter
A994} 1123 | ag04][123 J{123 Il shivii, R |
Relati A994(] 123 123 Smith, A
elation

A994||123 ||123 ||O'Brien M
Regular Composite Data File

K 7 MASTE ROOM ="A —~AND.

SLP\\/VE SLAVE->NA 'S
|
Coza) (Smin_1]
123 Shivji, R _A9_9AJ 123 123 Shivii. R
456 |lallen.p | A994](123 |[123 || Smith, A
123 [[O'Brien, M! Query Exp\%n
|_618_||_I:ILLDI§LL._N_| Queried Composite Data File
lezs Il Gruter. T
Figure 2.10 Queried Data File

Relations on Disk

Many times the relation set of one report isthe same, or similar to that of other
reports. Relation sets created with CodeReporter may be saved to disk and
retrieved into new reports using the FILE | SAVE RELATION and FILE | LOAD
RELATION main menu options. These menu options prompt for the file name of
the relation file and save/load the relation.

Relations are saved into special CodeReporter relation files which have a .REL
extension. If arelation isnot needed for another report, it is not necessary to
saveit, since a saved CodeReporter report file ((REP extension) contains the
report's relation.

When loading a relation file from disk, the current report's relation, and all
objects, totals, and calculations, are deleted.

Saving as Code

CodeReporter may a so save the relation as source code used with the
CodeReporter API function calls. Usethe RELATION | SAVE RELATION AS
Source CobE menu option. After selecting a destination file type, select afile
name, and directory using " Specify A Source File" didog. Thisfile may then be
used with the CodeReporter API. See the CodeReporter API for more information
on using the generated source code file.

Chapter 2: Relational Reporting 65

Specify A "¢’ Source File |

File name: Folders:
E | c:\codebazeico . \examples
Cancel |

drizhell.c - ok -

:gg;z 4 codebase Network.__ I
wiepl.c %cuderef

vl examples

e [~ Bead only
Save file as type: Drives:

|Source File (~.C)

_VJ I = o c_dnve :]

Figure 2.11

Example

Save As Code Dialog

As an example of building arelation, this section will describe the steps
necessary for building the relation shown in Figure 2.7.

Top Master Data File

The top master data file for any relation, COMPANY .DBF in this caseg, is set
when anew report fileis created. Select FiLE | NEw to create a new report
file.

When the "Select Data Fil€" dialog appears, locate the COMPANY .DBF
datafile (in the CodeReporter examples directory: \EXAMPLES), and select
the "OK" button.

The report definition screen isdisplayed. Select RELATION | MoDIFY to add
the dave datafilesto the relation set. The "Relation” dialog will look like
Figure 2.12.

| Relation

Hew Slave Delete Slave Modify Link Close

66 CodeReporter

Figure 2.12 Relation diaog for example

The top master datafileis displayed as a button with the data file's name
upon it. The next related datafile to add is the STORES.DBF datafile.
Choose the New SLAVE menu option and, when the "Select Data File"
dialog appears, select the STORES.DBF data file.

Modifying the Relation

Sincethisis anew relation, the "Data File Link" dialog box automatically
appears. STORES.DBF has two tagsin the "Existing Tags" list box:
COMPID (keyed on STORE->COMPID) and COMP_STORE (keyed on
STORE->COMPID+STORE->STOREID). The master datafile COMPANY has
aCOMPID field, but no STOREID field, so the STORES.DBF tag
COMPID should be selected.

Use the keyboard to tab to the "Existing Tags' list box and select COMPID,
or click on it with the left mouse button. Notice that the "Slave Tag" edit
control automatically displays information on the COMPID tag.

A master expression that corresponds to the selected tag should be entered
into the "Master Expression” edit control. In this case, the master expression
ismerely afield of the master datafile. Enter the following text (but do not
hit the enter key).

COMPANY->COMPID

dBASE lll and Clipper users must manually open the index files containing
the appropriate index ordering using the "Modify Link" dialog's "Open
Index" button. The files used in this example are found in the
CodeReporter examples directory (\EXAMPLES) and are named:

STCOMPID.NTX (.NDX) (for STORES.DBF)
SACMPSTO.NTX (.NDX) (for SALES.DBF)

EXCMPSTO.NTX (.NDX) (for EXPENSES.DBF)

The type of relation between COMPANY and STORES may depend upon
the report. Since each company likely has more than one store, however, the
relation type is probably a scan relation. Use the mouse to select the "Scan
Relation" radio button.

Change the default error action, Blank Fields, to Skip Record and the
"Modify Link" dialog looks like Figure 2.13. Press the "OK" button.

Chapter 2: Relational Reporting 67

| Relation

Hew Slave Delete Slave Modify Link Close

Figure 2.13 Partialy completed sample relation

Adding a Slave to a Slave

The STORES.DBF datafile is a slave of the COMPANY .DBF datafile. In
order for the relation to properly retrieve information for each store's sales, an
additional datafile, SALES.DBF, is needed. The SALES.DBF datafile
contains the following fields: COMPID, STOREID, AMOUNT, and
PRODCODE (areference to a products datafile). Asit can be seen each
salein the datafile is associated with a company and a store. Asaresult, in
order for the sales to be attributed to exactly the right store, information
about the company and its store is necessary.

Thisindicates that the SALES.DBF data file must be placed within the
relation in a place where it has access to both the COMPANY .DBF and
STORES.DBF datafiles. The SALES.DBF datafileis properly placed asa
dlave of the STORES.DBF datafile. STORES.DBF, then, is acting as both
adave datafile of COMPANY .DBF and a master datafile of SALES.DBF.

Use the Tab key to move the selected datafile (currently COMPANY .DBF)
to STORES.DBF or select STORES.DBF with the left mouse button.

To add the SALES.DBF datafile to the relation, select the New SLAVE menu
option or double click on the STORES.DBF data file's button. Either one
invokes the "Select Data File" dialog box in which the SALES.DBF datafile
may be located and sel ected.

Once the datafile is selected, the "Modify Link" dialog box isinvoked so that
the relation may be properly set up. Enter the following settings and select
the "OK" button:

Select the COMP_STORE tag entry,
Enter COMPANY->COMPID+STORE->STOREID for the master expression,
Set a scan relation by selecting the "Scan Relation™ radio button,

Ensure the default error action, blank fields, is selected using the "Blank
Fields' radio button.

68 CodeReporter

Once these settings are made, choose the "OK" button to exit the "Modify
Link" dialog. The SALES.DBF datafile is added below STORES.DBF.

The reasoning behind placing the SALES.DBF datafilein its position is
exactly the same for the EXPENSES.DBF data file. EXPENSES.DBF
requires information from both COMPANY .DBF and STORES.DBF, but
not SALES.DBF. Asaresult, it should be placed on the same level as
SALES.DBF.

While the STORES.DBF datafile's button is selected, choose the New SLAVE
menu option, select the EXPENSES.DBF data file, and enter the
following settings in the "Modify Link" dialog:

Select the COMP_STORE tag entry,
Enter COMPANY->COMPID+STORE->STOREID for the master expression,
Set a scan relation by selecting the "Scan Relation™ radio button,

Ensure the default error action, blank fields, is selected using the "Blank
Fields' radio button.

Select the "OK" button to close the "Modify Link" dialog and return to the
"Relation” dialog.

This complex relation may now be used as the basis for a complex report
involving information from all four datafiles.

Since this relation involves two scan relations using the same master data
file, the information retrieved may be slightly different than expected. See
the Master of Multiple Slaves section, above for more information.

Chapter 3: Groups 69

3. Groups

What is a Group?

It isthe purpose of al reports to put randomly entered data into an organized
format that is easily understandable. Reports break up this datainto logical
sections and/or summarizes it to put the data into a useful formeat.

By sorting the composite data file, records with common information are
placed next to each other. Records may be sorted upon one or many fields.
That is, the composite records are accessed in a new order depending upon
the fields located in the sort expression.

Asaresult of being sorted, these records can be thought of as being in logica
subsets.

For example, adatafile that is sorted on department code creates a composite
datafile that contains subsets of different departments. All records
containing department 'A" will be placed before the records containing
department 'B'. All records containing department ‘A’ may be thought of asa
subset of the composite datafile.

When the sort expression contains more than one field from the composite
datafile, the resulting composite data file may be thought of as having major
subsets which contain their own minor subsets.

For example, a sort expression containing both the department code and the
location code will have individual department subsets which contain their
own location subsets. See Figure 3.1 for an illustration of major and minor
subsets.

These inherent subsets, then, also describe the overal flow of the report. The
report logically progresses from one record to the next, stepping through each
major and subsequent minor subsets of the composite data file, until all
records have been processed.

When each new subset of the composite datafile is processed for the report,
certain actions may be performed, such as accumulating/resetting totals,
outputting fields from the composite data file, outputting titles, performing
calculations, etc. Which actions are performed for a given composite record
depends upon the subset in which the record may be found.

These subset-specific actions are performed by CodeReporter in constructs
called groups.

70 CodeReporter

The best way to illustrate the concept of subsets and groups are by way of an
example. Figure 3.1 shows a composite data file which is sorted on DEPT,
LOC, EMPLOYEE, and DATE. Asshown ontheright, sorting the datafile
in this manner produces four distinct subsets -- one for each part of the sort
expression.

A subset of all
cords where

DERT is 'ENG’

A subget of all
recofds where
DEPT is 'ENG' and

C is '001'

A subset of all

ords where
DERT is 'ENG' and

DEPT LOC EMPLOYEE DATE HRS
| ENG | | Jones, Pete | | 07/20 || 8.5
[enc | [ones, pete | [o721 |[7 ENG | [Jones, ete | {0720 || &5
| ENG || Smith, John || 07120 || 8.5 ENG | | Jones, Pete || 07121 || ’
| ENG || Sanders, Bo || 07/20 || 85 ENC || Smith, John H 07/20 ” 85
| ENG || Sanders, Bo || 07/21 || 7 ENG || Sanders, Bo || 07/20 || 85
|ACT | | Adams, Jon || 07/20 || 8.5 | ENG || Sanders, Bo ” o7/21 ” ’
| ACT | | Adams, Jon | | 07/21 | | 3 | e | | —— | | - | | =
|ACT || Bland, Van || 07/20 || 8.5 | — | | — || — || -
,
|ACT | 001 | Bland, Van || 07/21 || 3 | | — || F— ” — ” —
|ACT || Tech, June || 07/21 || 3 |
A 'subset’ of all records ENG | | Jones, Pete | | 07/20 | | 8.5
ENG | | Jones, Pete | | 07/21 | | 7

Figure 3.1

| ENG | | Jones, Pete || 07/20 || 8.5 |

A subset of all records where DEPT is 'ENG' and
LOC is '001' and EMPLOYEE is 'Jones, Pete' and
DATE is '7/20

A composite data file and its subsets

Each of these subsets will most likely have an action associated with it;
probably providing a subtotal of hours for each subset; atotal number of
hours worked by each employee, atotal number of hours worked at each
|ocation, etc.

As aresult, each subset may be represented by a group which will perform
thisaction. The full composite datafile itself may also be considered a group
in this regard, since the report will likely contain a grand total of all
departments. The sorted composite data file in Figure 3.1 suggests afive
group report similar to the onefound in .

Group Expression

The group expression is a dBASE expression that describes the subset with
which the group is associated. This expression is evaluated for each
composite record in the data file, and when its value changes, the group's
actions are performed (mostly outputting the group's header and footer for the
composite record). This change of the evaluated expression is called a reset
condition -- also known as a control bresk.

\Lb(;iﬂ 01' and
EMPLOYEE is '

Chapter 3: Groups 71

If agroup does not have a group expression (the "Group Expression” edit
control is left blank), areset condition occurs for every record of the
composite datafile. Thisis generaly used for producing the detail lines of a
report.

There is usually only one group in areport that has no group expression.
Having more than one group without a group expression can cause
undesirable results when outputting the report.

In "Figure 3.1" on page 70, the first subset isbased on all records that have
'ENG' in the DEPT field. The DEPT field determines the difference between
that subset and the one that contains 'ACT".

72 CodeReporter

Once per report

_| Hours Report

—(Department: ENG) Once for every DEPT
)
)
)

—(Location: 001 Once for every LOC

_' Employee: Jones, Peter

e(7/20 8.50

Once per EMPLOYEE

Once per record

7/21 7.00 (or DATE)
L Total for Jones, Peter 15.50) Once per EMPLOYEE
Employee: Smith, John
7/20 8.50
Tota for Smith, John 8.50
—(Total for Location 001 24.00) Once for every LOC

Location: 002

Employee: Sanders, Bo

7120 8.50
7121 7.00
Total for Sanders, Bo 15.50
Total for Location 002 15.50
_(Total for department ENG 39.50 J Once for every DEPT
l Grand Tota for al Departments. 65.5 JOnce per report

Figure 3.2 Report Groups

Chapter 3: Groups 73

The group expression for that group would then be "DBF->DEPT" (assuming
the data file name was DBF). Notice that the group expression was not
"DBF->DEPT='ENG"™. Thisis because the group expression does not
describe a specific subset, but the basis of the subset. When the evaluated
group expression changes, a new subset has been reached and the actions of
the group are performed.

The group is "grouped on" its group expression.

Header and Footer

A group can be delimited at the beginning and ending of the subset by
outputting a section of text. These sections, or report areas (See), are
associated with the group and are an integrated part of the action of the

group.
The area at the beginning of the group (eg. "Department: ENG" in Figure

3.2) is called the group header, and the area at the end (eg. "Total for
department ENG") is called the group footer.

A group's header and/or footer may contain zero, one, or more report areas --
which are sections of the report in which output objects may be placed (see
and). The group header and footer are used to perform the actions of the
group, that is, when a group reset condition occurs, the report areas
associated with the header and footer are outputted.

The main difference between the report areas associated with the header and
the footer is that:

the values of the objects outputted in the header area are based on the
composite record that caused the reset condition, and

the values of the objects outputted the footer area are based on the
composite record immediately prior to the composite record that caused
the reset condition.

See Figure 3.3 for avisual representation of this concept. When agroup is
created, it automatically contains one header and one footer area.

74 CodeReporter

LNAME NUM Moving from the SANDERS subset to the SMITH
subset causes a reset condition which initiates
the output of the areas associated with the
SANDERS|| 6 | LNAME group.

SANDERS|| 5 Areas associated with the header of the LNAME
group output this record.
SMITH 1
Lswmith_ | 2] SR LS
SMITH 3
| ol TH || 4 | Areas associated with the footer of the LNAME
SMITH 5 group output this record.
| THompsdhis |
THOMPSQN 4

Figure 3.3 Headers and footers

Creating Groups

A group is created by using the GrRour | NEw menu option. Each new group,
by default, is created so that all of the previously created groups are between
the new group's header and footer area(s). This default action creates new
groups at the highest (outermost) level.

When agroup is placed within another group, it is said to be nested.

As groups are created, new information windows are created to identify the
groups and their header(s) and footer(s). The information windows may be
hidden by de-selecting the View | INFo Windows menu option. See the Report
Design Screen in the Getting Started section and for information on the
information windows.

Using the Grour | NEw menu option invokes the "Group Settings' dialog (As
shown below in Figure 3.4).

Name

A group may have a descriptive name associated with it which helps the
report designer identify the contents of the group. By default, CodeReporter
uses "Body" for the first group, "Group 2" for the second group, "Group 3"
for the third, etc.

Thisnameis only a descriptive way of referring to the group, and may be
changed or modified as desired. Usualy this descriptive name reflects the
group expression in some way.

Chapter 3: Groups 75

Position

The "Position” setting determines where the group is placed in relation to
other groups. The innermost group in the report (the smallest subset) is
group 1. New groups are by default made the outermost group, and have the
highest group number.

Changing this number moves the group into the desired position and
shuffles the other groups appropriately.

Group Settings I
Group Name: Position: 0K
Bod 1
?I Cancel

Reset Condition:

Easy Expr.
" Swap Header " Reset Page
¢ Swap Footer " Reset Page Number
" Hepeat Header

Figure 3.4 Group Settings Dialog

Group Options

CodeReporter provides some specia group handling that provides ways to
customize the look of the reports.

Swap Header and Swap Footer

When a group encounters a reset condition and the " Swap Header" radio
button is set for the group, a new page is generated and the group's header is
outputted in the position of, and instead of, the page header area. The page
header is not outputted on that page.

This is an advanced concept that may be difficult to understand initially. It
may be necessary to take some time to examine Figure 3.5 and the text

76 CodeReporter

listed below before the concept is understood. Also see the Statement of
Accounts tutorial in the CodeReporter printed documentation.

In asimilar manner, when a group encounters a reset condition and the
"Swap Footer" check box is set for the group, the rest of the current pageis
skipped and the group footer is used in the position of, and instead of, the
page footer area. The page footer is not outputted for that page.

A swapped header is generally used to display different information or
information in a different format than the page header area.

The main purpose of a swapped footer or header is to suppress the page
header/footer, generate a new page, and output the group's area whenever a
group reset condition occurs. Thisis different than the area suppression
condition available for the page header/footer areas (See), because the areais
suppressed on a change of value instead of alogical condition.

Figure 3.5 shows a sample report that uses a swapped header and a swapped
footer. The page header used on page 2 and 3 is not appropriate for page 1,
since the summary provided in the page header is aready found in the group
header. Every new customer invoice begins upon a new page, and the
customer's full information is listed.

Chapter 3: Groups 77

rJohn Q. Public Page: 2

Apr 15, 1990 $150.00
Apr 16, 1990 $150.00
July 30, 1990 $200.0
Aug 15, 1990 $150.00
Aug 16, 1990 $150.00
Aug 30, 1990 $300.0
Sep 15, 1990 $150.00
Sep 16, 1990 $150.00
Sep 30, 1990 $300.0
Oct 15, 1990 $200.00

STATEMENT OF ACCOUNTS

John Q. Public
1234 Any Street
AnyTown, NY, 12345

Jan 15,1990 $200.00
Feb 15, 1990 $200.0
Feb 16, 1990 $150.00
Feb 17,1990 $150.00

Mar 15, 1990 $300.0

4 : Group header -- Swapped with
John Q. Public Page: 3 page header
Oct 17, 1990 $350.0)
Dec15, 1990 $150.00 D R oo - Swapped with

Decl6, 1990 $150.00
Decl17,1990 $150.00
Dec20, 1990 $150.00
Dec20, 1990 $600.0

Lo v]

Figure 3.5 Swap Header/Footer Example

If asmple page header were used instead of a swapped group header, the
unbordered grayed portion (as page header) would be printed on each page of
the invoice -- giving very little differentiation between the cover page and the
remaining pages.

Notice that Figure 3.5 does not have a page footer area. 1n the case of a non-
existent page header/footer, the group header/footer is outputted where the
page header/footer would have been.

Repeat Header

When a subset of the composite data file (represented by a group) cannot fit
on the rest of the current page, having the "Repeat Header" radio button
selected causes CodeReporter to output the group's header area at the top of
the page (below the page header), even though a reset condition has not
occurred.

Thisis useful for maintaining column titles across page boundaries.

78 CodeReporter

Reset Page

The "Reset Page" radio button generates a new page when a group reset
condition occurs. The actual sequence of events are: the group's footer, as
well asthe footers of al inner groups, are outputted and a new pageis
generated. The next page's header and the group's header are both processed
at the beginning of the new page.

Reset Page Number

The "Reset Page Number" functions exactly the same as the "Reset Page”
option, except that in addition, the new page's page number isreset to '1'.

Hard Reset Page

The behavior of reset page (including the page reset for swap header and
reset page number) is affected by the Hard Reset Page setting in the "Report
Preferences’ dialog. See.

Modifying a Group

The "Group Settings' dialog box is used to change the settings for an existing
group. Once agroup is created, this dialog may be invoked either by
selecting GRour | MopiFy or by right clicking on the group's information
window. See for information on the settingsin the "Group Settings' dialog.

Deleting a Group

The selected group, and all areas and output objects associated with it may be
ddeted by sdlecting the Group | DELETE menu option. Deleting a group does
not affect other groupsin the report.

Selecting a Group

Clicking the left mouse button anywhere within an area of the group -- or
clicking upon an object within an area -- selects that group.

Alternately, the Ctrl- Up and Down Arrow keys may be used to select another
group.

Reset Conditions and Group Printing

When a group expression changes, a reset condition occurs. This reset
causes that group's footer to be processed, itstotals to be reset, and finally
the group's header to be processed with the next composite record. In a multi-
group report, areset condition resets the group whose expression changed, as

Chapter 3: Groups 79

well as all lower level groups (groups between that group's header and
footer).

Figure 3.6, in your CodeReporter manua shows the output of areport with
groups on Y ear, Month, and Day. When the 'Month' group is reset the 'Day"
group is automatically reset.

Groups are only outputted when they arereset. In Figure 3.6, in your
CodeReporter manual, the second record is exactly the same as the first.
Since each group has areset condition -- and none of them were reset -- the
second record is not outputted. However, when the third record (FEB 20,
1992) is encountered, the ‘Month' group isreset. This automatically resets
any inner group (‘Day’, in this case).

When areset condition occurs, the footers are outputted, in order beginning
with the innermost group, until the footer of the original group that caused the
reset condition is outputted.

Figure 3.6, in your CodeReporter manual, demonstrates this by first
outputting the footer of the 'Day' group and then the footer of the 'Month'
group. Notice that the "Y ear' group footer is not outputted at this point,
because the "Y ear’ group has not been reset Also notice that the date value
displayed in the 'Day' and 'Month' footersis that of JAN 20, 1992, the second
record, and not FEB 20, 1992, the record that caused the reset condition.
Thisillustrates the second rule mentioned in Group Header and Footers,
above: footers are outputted with the values from the record immediately
prior to the record that caused the reset condition.

Once the innermost group is processed, the next record isused. In Figure 3.6
in your CodeReporter manual, the FEB 21, 1992 record resets the 'Day’
group. Since only the 'Day’ group is reset, only the footer for the 'Day’ group
is outputted -- again with the values of the previous record -- and then its
header is outputted with the values of the new record. The processing of all
the records is complete, so the report is ended by outputting the footers of all
the report's groups. Therefore, in brief, when agroup is reset:

The footers of al the groups are outputted first, before any of the headers
are outputted. The footers are outputted in order, beginning with the
innermost group, until the original group that caused the reset condition
isoutput. The value of the record immediately prior to the record that
caused the reset condition is used to output the group footers.

If any of the groups reset have the "Reset Page" option set, the output of
the report begins on a new page. (See, above and)

Once the footers have been processed, the headers are processed inwards
beginning with the group that was reset using the value of the record that
caused the reset condition.

Groups outside a group that encounters a reset condition are not
processed. In this example, the 'Year' group is not reset until its own
group expression has changed.

80 CodeReporter

Sample Data File

[JAN 20, 1992 | JAN 20, 1992 | [JAN 20, 1992
| JAN 20, 1992 | Beginning of report Second record, no reset
All totals are zeroed conditions, all totals are
| FEB 20. 1992 | and then accumulated. accumulated.
- All headers are
| FEB 21, 1092 | ouputted.
FEB 20, 1992

‘Month’ reset condition
encountered, ‘Day’ is
automatically reset.

Year: 1992 4 /

Month: January

Output footer for inner group

Day: 20 Output footer for Month

*** Day is reset *** Days the Same: 2 01/20/92 Reset Month and Day totals to

zero and accumulate all.

*** Month is reset *** Months the Same: 2 01/20/92

Output header for Month,
Output inner group’s header

Month: February FEB 21. 1992

‘Day’ reset condition
encountered
Output footer for Day group

Day: 20
*** Day is reset *** Days the Same: 1 02/20/92

Reset Day total to zero and
accumulate all totals.

Day: 21 <
Y Output header for Day group
*** Day is reset *** Days the Same: 1 02/21/92 .
End of File. Output all footers
*** Month is reset *** Months the Same: 2 02/21/92
*** Year is reset *** Years the Same: 4 02/21/92

Figure 3.6 Group Reset Conditions

Chapter 4: Areas 81

4. Areas

An areais aspot in the report where output objects may be placed. The page
header, page footer, and the main body of the report all are considered areas
where output objects may be placed. Except for special areas (page
header/footer, title/lsummary), areas are associated with groups, which dictate
when the output objects within the area may be outputted. When a group
encounters a reset condition, the areas associated with the group are
outputted.

When agroup is created, it has two default areas associated with it: the group
header and the group footer -- except for the default "BODY" group which
only has a group header. These areas may be used as defaults for the group's
report areas, or they may be sized, deleted, or suppressed as needed by the
report.

[l CodeReporter 2.0: UNTITLED

File Align Edit “iew Beport Relation Group Area Object Style Help
Field | Expression | Total | Calculation I Textl H-Line | V-Line I Frame I None I Printl Previewl |

....I...!...I...|...I...!...I..”...I...!...I...|...I...!...I.......I...!...I.......I...!...I.......I...!...I.......I...!...I....J

Group: Bodv Header Areal ofd
) Selected
Szing < d Area
Handles | Group: Body Foater
Area
N\
Plain Text tS Serif |10 |[Body : Area T, Height 0846 cm.

Figure 4.1 Area and Sizing Handles

Areas are very smple to use, yet very flexible. In addition to grouping
output objects, a set of mutually exclusive suppressed areas may serve to
change the layout of the report. A group may have several header areas
and/or several footer areas which may be outputted at different points within
the report -- depending upon the contents of the report. In addition, an area
can be configured so that it may span a page break.

Selecting an Area

Clicking the left mouse button anywhere within an area -- or clicking upon an
object within an area -- selects that area. Alternately, the Ctrl- Up and Down
Arrow keys may be used to select another area. Selecting an areain this
manner also selects the first output object added to the area. Once an areais

82 CodeReporter

selected, it may be modified, deleted, or an additional areafor the current
group may be created.

Creating an Area

A header or footer areamay be created for the selected group by using the
AREA | NEw HEADER, Or AREA | NEw FOOTER menu options. To create a Page
Header, Page Footer, Title or Summary area, choose the appropriate menu
option from the Area menu. For more information on these areas, see the
appropriate sections below.

Deleting an Area

The selected area may be deleted by choosing the AREA | DELETE AREA menu
option. Deleting an area also deletes all output objects within the area.

All areasin agroup header or footer may be deleted, however the information
window for the last group areawill remain displayed if the ViEw | INFO
WINDOWS menu option is set.

Modifying an Area

An area has three characteristics that may be modified: its size, whether it is
suppressed, and whether it spans a page break.

These options may be set through the "Modify Area" dialog box , whichis
invoked for the selected area with the AREA | MoDIFY AREA menu option, or
by right clicking within the area.

Sizing an Area

Using the mouse

The vertical size of an area may be changed by using the mouse or the
"Modify Area" dialog box (Figure 4.2). The horizontal size of areas may not
be individualy changed. The horizontal size of the report is changed by
modifying the entire report's page size or margins.

Expanding the vertical size of an area does not affect the position of the
output objects within the group. Reducing the size of an area, however, may
cause some output objects to be deleted if, at their current position, they no
longer completely fit within the new, smaller-sized area.

The desired size for the area may be set manually by entering the new height
in the "Modify Area" dialog's "Height" edit control. The units of
measurement are those set with REPORT | PREFERENCES.

The mouse may also be used to change the vertical size of a selected area by
dragging one of the selected ared's size handles to the desired position with
the left mouse button. See Figure 4.1.

Chapter 4: Areas 83

Modify Area |

Body Header: Area 1

Suppression Condition:

Easy Expr. |

&+ Allow Page Breaks

OK

Height:
0.333 - Lancel

Figure 4.2 Modify AreaDiaog

Allow Page Breaks

When the "Allow Page Breaks" option is enabled (the default) for an area, the
areamay span a page break. If a page break (bottom of the page minus the
page footer) would fall within an area, the area is divided between the two
pages. CodeReporter outputs as much of the area asit can fit on the page --
without dividing any object(s).

Frames, lines, and word wrapped objects that span most of the height of an
area may make this setting useless. CodeReporter will not divide an object
between two pages, so even if the "Allow Page Breaks' radio button is set,
the whole area may be placed on a following page regardless.

If an output area must not be divided between two pages, de-select the "Allow
Page Breaks' radio button.

Suppressing an Area

A logical dBASE expression may be associated with an area to determine
whether or not the area should be outputted. If the dBASE expression
entered in the "Suppression Condition" edit control evaluates to a true value,
the area (and all the objects within it) is ignored.

This feature may be used to vary the outputted area's appearance or contents
depending upon the data within the report. This is done by creating two or
more areas within the same part of the group (header or footer), adding the

84 CodeReporter

different information to the different area(s), and deciding when to suppress
which area(s).

For example, if anumeric field value is negative, it may be appropriate to
display it in ared font, instead of ablack font. The objectsin the two
versions of the areawould be identical except for that in one case the red font
would be used. Each areawould contain a suppression condition.

Black font (Suppress for negative values): DBF->FIELD < 0
Red font (Suppress for positive values): DBF->FIELD >=0

An example of suppressing an area may be found at the "end of this chapter”
on page 85.

Page Header and Page Footer Areas

The Page Header area(s) are outputted at the top of every page in the report
and are generally used for text objects containing a brief name of the report, a
date, and/or a page number.

The Page Footer area(s) are outputted at the bottom of every page in the
report and are generally used for text objects, running totals, page totals, and
page numbers.

If used, these areas appear on every page of the report unless they are
suppressed, or if one of the groupsin the report has the Swap Header or
Swap Footer option enabled. These areas are created with THE AREA | NEw
PAGE FooTeER and AREA | NEw PAGE HEADER menu options.

Title and Summary Areas

Page Break After

The Title area(s) are the first report areas to be displayed on the first page of
the report. The Title area(s) are even outputted above the page header
area(s). Only onetitle areais outputted per report. As such, the Title area(s)
are generally used to display descriptive information unique to the report,
such asthe report name. Thetitle area may be thought of as a cover page to
the report.

If apage break is desired after the Title area, select the "Page Break after
Title" check box, found in the "Report Preferences’ dialog (See the).

The Summary area(s) are the last report areas to be displayed before the page
footer on the last page of the report. Only one summary area is outputted per
report. The Summary is usually used to present final comments, and/or
numerical data which summarizes the entire report.

These areas are created with the AREA | NEw TITLE AREA and AREA | NEW
SUMMARY AREA menu options.

Chapter 4: Areas 85

Example

This example displays the contents of the NUMBERS data file which
contains both positive and negative numbers. By using two groups,
suppression conditions, and a different font, the negative values found in the
NUMBERS datafile will be displayed in red, while the positive numbers will
be displayed in black.

This example illustrates some of the skills discussed in this chapter, and
incorporates some skills found in the Objects and Styles chapters. For
further information on objects and styles, see their respective chapters.

Open a New File

Once CodeReporter is running, choose the FILE | NEw menu option and select
the NUMBERS.DBF data file from the \EXAMPLES subdirectory.
CodeReporter creates one group, "Body", with one header area.

Second Header

A second group header to display the negative numbersis created by selecting
the AReA | NEw HEADER AREA. Once the second areais created (and
automatically selected), choose the AREA | MoDIFY AREA menu option to
invoke the "Modify Area" dialog and type the following expression into the
"Suppression Expression” edit control:

| NUMBERS- >NUVERI C >= 0 |

Whenever the value of the NUMERIC field is greater than or equal to zero (a
positive number) the second area will not be outputted. This is necessary
because the second area is used to output only the negative numbers --
positive numbers are outputted using the first area. Select the "OK" button
when finished.

Modifying the Area

Thefirst area, by default, has no suppression condition and would display for
every value -- positive or negative -- in the NUMBERS datafile. Toseta
suppression condition for the first area, invoke the "Modify Area" dialog
whilethefirst areais selected, or right click while the mouse pointer is above
thefirst area

Type the following expression into the " Suppression Expression” edit control:
| NUMBERS- >NUVERI C < 0 |

Whenever NUMERIC is a negative number, the first group -- the one used to
output positive numbers -- is suppressed.

Adding the Fields

Use the mouse to select the "Fields' button on the button bar. Single click on
the NUMERIC field in the popup list to select it.

Position the mouse over the first area (the mouse cursor changes to the Field
cursor) and press the left mouse button to position the field (See the for more
information on placing and moving output objects).

86 CodeReporter

Load a Style Sheet

Selecting a Style

Preview the Report

Select the NUMERIC field again in the popup list and place it in the second
area. When finished, select the "Done" button on the "Field Objects’ list box.

Usethe STYLE | LoAD STYLE SHEET menu option and select the
TUTORIAL.CRS style sheet. When CodeReporter prompts to override the
current style, choose the "Y es' button. For more information on creating
styles, saving and retrieving a style sheet, see the Styles chapter.

Select the NUMERIC field in the "negative" area by left clicking on it. Select
the "Style" button from the status bar and double click on the "Red" style.
This changes the style for al selected output objects. Since the NUMERIC
field in the negative areais selected, its style is set to Red.

View the completed report by selecting the FILE | PRINT PREVIEW menu option.
Notice that the report displays all of the valuesin the NUMBERS datafile,
but that now, since two areas and mutually exclusive suppression conditions
are used, the negative numbers are outputted in ared typeface.

Chapter 5: Output Objects 87

5. Output Objects

Static vs. Dynamic

The term "output object” describes the collection of report eements that are
used to convey the information of the report to its reader. Output objects are
the "guts' of the report -- the text, fields, totals, graphics, lines, frames, etc. --
that are actually put on paper when the report is printed. Everything
outputted in the report must be done through an output object.

Some output objects output the same information throughout the life of the
report, while others change with every composite record. The output objects
that stay the same -- such as lines, descriptive text, company logos, €tc. -- are
called static output objects. The value and settings for these report elements
are et at report design time and do not change when the report is run.

The values for other output objects -- such as fields and totals -- can change
from each different run of the report or indeed from one composite record to
another. These constantly changing report elements are called dynamic
output objects. The values for dynamic output objects reflect the information
in the composite data file(s) -- which can change at any time.

The different types of static and dynamic output objects are discussed in-
depth later in this chapter.

Creating Output Objects

An object has a specific type associated with it; afield, aline, some text, etc.
The type of an object is specified asit is created and stays with it throughout
itslife. Output objects may be placed in any report area, including the page
header/footer, the title/summary, and a group's header/footer. (Seethe
Groups and Areas chapters.)

Objects created in an arearemain in the area unless they are moved using the
cut and paste procedure described under “Moving Objects’ on page 90,
below.

Insert Mode

When an object type has been selected for addition to the report,
CodeReporter is put into insert mode. The status bar indicates this by
updating the status bar with the words "Insertion Mode:" followed by the
object type being inserted. The mouse cursor, which is changed to reflect the
appropriate object type (see Appendix C), may be used to indicate the initial

88 CodeReporter

position of the new object. Clicking with the left mouse button places an
object of the selected type.

The exact process of creating an object varies from type to type. Some
objects require an initial value, while others use default values. Listed below
are the general procedures for creating an output object. For a detailed
description of creating a specific object, see the object explanation below.

Using the Button Bar

The button bar is the easiest way to add different types of output objects.
Simply click on the object type's button and CodeReporter is put into
insertion mode for the specified type of object. All object types except
graphic objects are included in the button bar. Graphics may only be added
using the menu.

Using the Menu

The OsJeCcT menu option contains alist of all the output objects. Select the
appropriate menu option to put CodeReporter into insertion mode for the
specified type of object.

Creating Multiple Objects

CodeReporter continues to be in insertion mode for the specific object type
until another object typeisselected. That is, once an object type is selected,
multiple objects of the same type may be added without having to re-select
the object type.

CodeReporter is moved out of insertion mode by using the "None" button, the
OBJECT | NONE menu option, or pressing the Escape key.

Objects within Objects

An output object may be placed so that it completely surrounds another
smaller output object. When this occurs, the smaller object is considered
"within" the larger object, and it may be treated asif it isa part of the larger
object.

An action performed with the larger container object affects all the object(s)
within it aswell. For example, aframe object may be placed around severa
field objectsto provide aunique look. If anew styleis selected for the frame
object, all objects within it will also use the new style. If the container object
ismoved, al of the inner contained objects are also moved. If the frame
object isthen deleted, all the field objects within it are also deleted.

Chapter 5: Output Objects 89

Selecting Objects

Mouse

Keyboard

A "selected" object is one for which modifications, deletions, object
movement, etc. occur. In order to perform these actions an object must be
selected using one of the procedures described below. When an object is
selected, it is displayed in the report design screen in ared font and having
sizing handles.

Selecting an output object that contains other objects multiply selects all
objects within the container object.

An object may be selected with the mouse by clicking upon it once. In
addition, the group and area for the object are also selected.

The Tab key may be used to select output objects in the selected area.
Repeatedly pressing the Tab key cycles through all objects added to the area.
The Shift-Tab key cycles backwards through the objects in the area.

Multiple Selection

Mouse

Keyboard

It is often necessary to perform an action (such as changing a style) upon
several output objects. Multiple output objects may be "selected" and when
an action is performed once, it is applied to all selected output objects.

When more than one object is selected, the additional objects are displayed in
ared font to indicate that they are selected. Only the first object selected,
however, retains its given sizing handles.

The actions for which multiple selection apply are:
Moving objects,
Deleting objects,
Cut, Copy, and Pasting objects,
Selecting Styles, and
Using any Alignment menu option.

Multiple output objects may be selected by holding down the Shift key and
clicking on the objects to be selected. Any object, in any area, may be
selected in this manner. Objects may be de-selected by clicking on them a
second time while the shift key is held down.

Multiple output objects are selected using the keyboard by holding the Ctrl
key down and pressing the Tab key. Multiple objectsin different areas may
not be selected using the keyboard.

90 CodeReporter

Deleting Objects

The selected output object or multiply selected objects may be permanently
removed from the report by pressing the Delete key, or by choosing the
OBJECT | DELETE menu option.

When an output object which contains other objectsis deleted, all contained
objects are also deleted.

Once an object is deleted it cannot be recovered. If an object is deleted by
accident, it must be recreated from scratch.

Moving Objects

An output object may be moved to a new location within its area by selecting
the object with the mouse and dragging it to the desired position. Multiply
selected output objectsin one or more report areas may also be positioned by
pressing the Shift key while dragging the objects.

Precise positioning may also be obtained by using the X and Y edit controls
of the "Object Settings' dialog.

Output objects may not be dragged or positioned outside of their area.
Multiply selected objects in two or more report areas have their movement
constrained by the smallest report area.

Sensitivity

CodeReporter can precisely position output objects to a single Windows
Device Unit. Thisisavery small and very precise unit of measurement --
often too small to line objects up concisely with the mouse.

The ALiGN | SENsITIVITY menu option invokes the "Grid Sensitivity" dialog. In
this dialog, the Horizontal Sensitivity and Vertical Sensitivity may be set to a
movement distance (in the currently selected unit of measurement). This
defines an increment with which objects are moved. The larger the
increment, the fewer number of possible coordinates an object can occupy.
With alarger sengitivity setting, it is easier to quickly position objects.

The Sensitivity setting only affects new objects being placed and objects
being moved. Output objects that are already placed in the report are not
affected by this setting.

Alignment

Multiple objects may be lined up with one another quickly using the ALign
menu options. The first selected output object is used as the guide for the
movement of all subsequently selected output objects.

Left and Right

Chapter 5: Output Objects 91

Alignment along the left or right edge of the first selected object is done by
choosing the ALIGN | LEFT OR ALIGN | RIGHT menu option. Multiply selected
objects in one or more report areas may be aligned to the right or |eft of the
first selected object.

Center

The ALigN | CENTER menu option horizontally centers the currently selected
object within the report area. If multiple objects are selected, the center of
the first selected object is used as the center point upon which the other
objects are centered. The first object is not moved.

Top and Bottom

Alignment along the top or bottom edge of the first selected object is done by
choosing the ALIGN | Top OR ALIGN | BoTToM menu option. Only objects
selected in the same report area may be aligned along the top or bottom.

Space Horizontal - Vertical

Three or more objects may be moved so that there is an equal amount of
space between all objects using the ALIGN | SPACE HORIZONTALLY and
ALIGN | SPACE VERTICALLY menu options. Using the first and last selected
output objects as the end points, CodeReporter moves al of the interior
objects horizontally or vertically depending upon the option selected.

[l CodeReporter 2.0: UNTITLED

File Align Edit “iew Beport Relation Group Area Object Swle Help
Field | Expression | Total | Calculation I Textl H-Line | V-Line I Frame I None I F'rintl Prcviewl |

....I...!...I...|...I...!...I..”...I...!...I...|...I...!...I.......I...!...I.......I...!...I.......I...!...I.......I...!...I....J

| Group: Body Header

Group: Body Fooker Arealafl

Textl
Textl String that is longer than the rest

Textd

Plain T ext M5 Senf n Body : Areal, Heght 1.583 in.

Figure 5.1 Initial Layout

Figure 5.1 shows some randomly placed output objects. Given that they are
then selected in order (i.e. Textl, Text2 and then Text3), ALIGN | LEFT moves
the output object to the positions shown in figure 5.2.

92 CodeReporter

[l CodeReporter 2.0: UNTITLED

File Align Edit “iew Beport Relation Group Area Object Style Help
Field | Expression | Total | Calculation I Textl H-Line | V-Line I Frame I None I F'rintl Prcviewl |

....I...!...I...|...I...!...I..”...I...!...I...|...I...!...I.......I...!...I.......I...!...I.......I...!...I.......I...!...I....J

| Group: Body Header

Group: Body Fooker Arealafl

Textl
Textl String that is longer than the rest

Texti
= |
Plain T ext M5 Senf n Body : Areal, Heght 1.583 in.
Figure 5.2 Align Left

Using the positions in Figure 5.1 again, selecting the objects in order, and
choosing ALIGN | SPACE HORIZONTALLY, the output objects are moved to the
positions seen in Figure 5.3. Notice that the first and last selected objects
(Textl and Text3 respectively), do not move—but the middle object (Text2)
is spaced horizontally, equidistant from both ends.

[l CodeReporter 2.0: UNTITLED

File Align Edit “iew Beport Relation Group Area Object Style Help
Field | Expression | Total | Calculation I Textl H-Line | V-Line I Frame I None I F'rintl Prcviewl |

SIS SN S TINS SNV U NI SIS S S |

| Group: Body Header

Group: Body Fooker Arealafl

Text2
Textl String that is longer than the rest

Textd

Plain T ext M5 Senf n Body : Areal, Heght 1.583 in.

Figure 5.3 Align Horizontal

To Top - Bottom

When two output objects occupy the same space, one object is displayed and
outputted over the top of the other. CodeReporter determines which object
belongs on top of the other by the order in which the objects were crested.

Chapter 5: Output Objects 93

That is, older objects are always placed below newer objects. The OBJECT |
To Top AND OBJECT | To BoTToM menu options change the ordering for a
selected object so that it may be placed on top of or beneath another object.

Cut, Copy and Paste

Objects may be moved or copied to other report areas using the EpiT | Cur,
EpiT | CoPy, and EpiT | PASTE menu options. Objects that are cut or copied
are placed in the Windows clipboard until such time as they are needed again.

Invoking the EpiT | PASTE menu option changes the mouse cursor to a paste
icon. Position the cursor to the new position for the output object and click
the left mouse button.

Multiple objects may be cut, copied and pasted to and from the clipboard,
however, if the destination report areais too small to contain the output
objects, only the ones that can fit will be pasted.

Pasting from Other Applications

CodeReporter uses the Windows clipboard in the cut, copy and paste process,
so if another application has placed something in the clipboard, it may be
pasted into a report as atext object.

Graphic images from other applications may be pasted into a CodeReporter
report area as a static graphic objects.

Other applications, through their paste operation, may retrieve the text and
static graphics for CodeReporter output objects. Since CodeReporter output
objects are unique to CodeReporter, other applications may only access the
text and static graphic objects for output objects and not the actual objects.

Modifying Objects

Object Menu

Often it may be desirable to change some aspect of an output object, such as
itssize, its style, its justification, the number of decimals used, etc. These
changes may be made for the selected object through the "Object Settings'
diaog box.

Thisdialog isinvoked from the selected object's Object Menu.

Modifications specific to a particular output object are invoked from a popup
menu tied to the object. This menu contains three to four menu options,
depending upon the object's type. An Object Menu may be invoked in two
ways:

Click and hold on an object with the right mouse button, or
Select an object and press the Enter key.

94 CodeReporter

“]| CodeReporter 2.0: UNTITLED

File &lign Edit “iew FHeport FRelaton Group frea Object Stule Help
Field | Expression | Total | Calculation | Text H-Line_l \.I'-Linel Framel Nunel F'rintI Previewl |

ql||}|||%l|l?lI?I|I\|I|I?I|II|I‘
[TTTITT T T T T T T T T P AT T T T T T AT T T TP T T rriTTT TT T T T T AT T A T T T T T A T T e T e T [T T T T T A T T A AT T[T T i T rrr]l
Eﬁroup: Body Header Areal of 1 J
Jhis is a text Dhject .
| | S
Obije ngs
Modify Text
o Digplay Once ol
Close
[Plain Text | W5 St |70 |/ Obi Thisis atext obiec. [3.521.0.355), (1.479 % 0.250] in.

Figure 5.4 Object Menu

Object Settings

The "Object Settings' dialog is the primary tool for changing the attributes of
an output object. Thisdiaog isinvoked from the OBJECT SETTINGS Object
menu item.

The "Object Settings' dialog is divided into sections that provide options for
modifying the output object. Since some options are unique to certain output
object types, some sections may not appear for certain output objects.

Description
The upper left section of the "Object Settings' dialog contains a description
of the object being modified. It lists the object type as well as the name,
expression, or text used by the object.
Object: Position: Size: i~ by font
Text Object
e in. Width: in.
This is a text object e [0-385 | Height: in.
Style: Justification
* Left " Center " Look Ahead
Plain Text =
" Right

oK Cancel

Chapter 5: Output Objects 95

Figure 5.5 Object Settings Dialog
Position

The "Position” section of the dialog contains the current Horizontal ("X") and
Vertica ("Y") coordinates of the object's upper |eft corner. These
coordinates are in the units of measurement selected in the "Report
Preferences’ dialog. Changing the X and Y coordinates of an object changes
the position of the output object in the design screen. See Moving Objects,
above, for information on moving an object with the mouse.

|An object may not be positioned so that it is completely outside of its area. |

Size
The "Size" section of the dialog lists the current width and height of the
selected output object. These values are, by default, in the units of
measurement selected in the "Report Preferences’ dialog. These values may

be changed to select a precise size for the output object. See Sizing, below,
for information on sizing an output object with the mouse.

When the "By Font" radio button is selected, the values in the "Height" and
"Width" edit controls are converted to approximate character units. The size
of the edit control can be changed so that it is n characters wide, and m lines
tall. These units are in average character widths, so setting the size of the
object when proportionally spaced fonts are used may not be completely
accurate.

Style

The style (typeface, color, etc.) of the output object may be changed using the
"Style" drop-down list box. Only styles that have previoudy been created are
inthislist. For more information on styles and creating styles, see the Styles
chapter.

Justification

The text for output objects may be justified. That is, the text outputted for
the object may be placed on the left, right or center of the object.

Left Right Center
Justified Justified Justified
Object Object Object

By default, al output objects are left justified, except for numeric output
objects, which areright justified. The justification setting affects the
following object types: Fields, Static Text, Expressions, Totas, and
Calculations.

The TRIM() function is very important when justifying dBASE expressions
containing data file fields. Since data file fields contain a fixed length
(padded with spaces if it is not filled with data), justification produces little
if any results. An output object of 10 characters, for example, still contains

96 CodeReporter

Sizing

Sizing Handles

Figure 5.6

10 characters no matter how it is justified -- printing 10 characters in a 10
character space is simultaneously left, right, and center justified.

If an expression object, which evaluated to a 10 character result: "SHOES
", were center justified, it would appear almost the same as if it were left
justified, since the trailing spaces (even if they are proportional) are taken
into account. If the field were trimmed, "SHOES " would be converted to
"SHOES" and then the center justification would be visually correct.

Field output objects are automatically trimmed.

Proportionally spaced fonts may be justified without using the TRIM()
function. However, the outputted text will not visually be justified correctly,
since the trailing spaces, no matter how proportional they are, still take up
space in the string.

It is recommended that the TRIM() function be used liberally whenever right
or center justification of character data is desired.

An output object may be sized in two ways. by manually changing the value
inthe"Size" edit control in the "Object Settings' dialog, or by dragging the
sizing handles on the object with the mouse.

The "Size" edit control provides precise control over the height and width of
an output object, however, it is not visual, and is time consuming.

The sizing handles are a set of black squares placed on an object's display
text that may be used to change the size of an object (see Figure 5.6). By
pressing the left mouse button on a size handle and dragging the mouse, the
size of the object is changed.

When used in conjunction with the sengitivity settings, this method provides a
rapid method for accurately changing the size of any output object.

Graphic objects may be sized either with the "Size" edit control in the
"Object Settings" dialog, or with the sizing handles. Once the new size is
set, however, the image is enlarged and/or reduced so that it fills the new
space. The aspect ratio may not be maintained.

Sz [] Szng
Sang ___——SEOMPNAYE Be—— gan

Object Sizing Handles

Word Wrap

All output objects -- except lines, frames, and graphics -- output their
contents using the selected character set of the object's style. Most often the
output of asingle object isdone on asingle line. However, in some cases,

Chapter 5: Output Objects 97

especially long field objects (including memo fields) may not fit on asingle
line.

CodeReporter handles this by word wrapping objects within the size of the
output object. That is, if the text for an output object cannot be outputted
within the horizontal space allocated for the object, CodeReporter outputs as
many words (separated by spaces) as it can before the edge of the object, and
then -- vertical space permitting -- outputs the remainder in the second line of
the object.

Word wrapping does not increase the size of an object. If the text cannot
be outputted within the confines of the size of the object, the excess is
ignored.

CodeReporter, by default, creates single line output objects. If a multi-line
object is desired, change the size of the object through the "Object
Settings" dialog, or by using the object's size handles.

Look Ahead

The"Look Ahead" feature allows an object to be outputted in a group header
area with the value that it would have obtained if it had been in the group
footer. Essentially, thislets the output object obtain its value from the last
record before a group reset condition occurs. See the Header and Footer
section of the Group chapter for information on the differences between the
group header and footer.

For example, suppose an accounting report wasto list the activity for the
accounts sorted by account number and date, and for each account, it was
important to list the actual range of dates covered in the account. Since the
report is sorted by date, the first record in the group (the one used for the
output of the group header) contains the first date the account was active. A
simplefield object would suffice for the beginning of the activity range. The
last record before the group is reset would contain the ending activity date for
the account. A smplefield object placed in the group's header set as a look
ahead object would output the ending activity date for the account.

98 CodeReporter

Look Aheads and Totals

A look ahead total object placed in a group's header contains the same value
there asit would if asimple total object were placed in the group footer.

The practical implications of this, however, isthat the summation of the
group can occur before the output of the records, and the look ahead total can
be used in an interior group to output detail lines that contain a percentage of
the total.

For example, areport of the sales sorted by salesperson can display each
salesperson's percentage of total sales, smply by creating alook ahead total
object in an outer group, and in the salesperson’s group footer creating a
calculation that contains atotal of the salesperson's sales divided by the look
ahead total.

The following output object types can be set as look ahead objects: field,
total, calculation, expression, and dynamic graphic.

Example
As an example of look ahead output objects, this section documents the steps
necessary to create the sales report mentioned above.
XYZ Sales Inc.
Sales Summary
Total Sales: PBXX, XXX XX
Percentage of
Total Sales
Salesperson Name Sales
Sanders, John BXXX.XX XX.XX%
Smith, John BXXX.XX XX.XX%
Thompson, John BXXX.XX XX.XX%
Figure 5.7 Look Ahead Sketch Report

Open the Data Files

Select the FiLE | New menu option and choose LOOKAHD.DBF for the top
master datafile. Thisfileislocated in the \EXAMPLES directory. For
simplicity, this file contains the salespersons names and total sales.

A more complex configuration of the data files would probably have an
individual sales datafile and a salesperson datafile. In this configuration, a
relation would need to be established and atotal output object for the

Chapter 5: Output Objects 99

salesperson would be used in the "Body" footer instead of simply listing the
total salesfield in its header.

Creating the Report Areas

Since the report description indicates that the ook ahead total object sums the
entire report, it should be placed in a header areathat is only outputted at the
beginning of the report -- such asthetitle area. Use AREA | NEw TITLE AREA
to create the title area. Size it to about 1 inch tall.

Adding the Field Objects

Adding the Labels

Adding the Totals

In the "Body" header area, place the two fields of LOOKAHD.DBF. Thisis
done by selecting the "Fields' button in the design screen, select the NAME
field, move the cursor to the "Body" header area and click the mouse to place
thefield. Repeat these steps for the TOTSALESfield. For information on
placing data file fields in areport, see the Fields section below.

For information purposes, the title of the report and the column titles for the
salespeople should be added in the title area. Select the "Text" button in the
design screen, position the cursor in thetitle area and click the left mouse
button. The "Enter Text for Text Object” diaog isinvoked to prompt for the
text used in the text object. Enter Xyz sal es and select the "OK" button.
Repeat this process for "Sales Summary", "Total Sales’, " Salesperson
Name', "Sales’, and "Percentage of Total Sales".

Totals are based upon numeric calculations and numeric data file fields.
Since the total sales are aready calculated in the TOTSALES field, no
calculation is needed.

Select OBJECT | TOTAL to invoke the "Total Calculations' dialog box. Choose
theTOTSALES field and place the total output object in the title area (as seen
in Figure 5.7).

The"Total Settings' dialog isinvoked to prompt for the name and reset
condition for the total object. Use TITLETOTAL for the name and, since the
total summarizes the entire report, leave the "Total Expression” edit control
blank. Select "OK". Select the "Done" button on the "Total Calculations'
dialog to remove it from view.

All objects, including total objects, are not originally set to be look ahead
objects. To make the new TITLETOTAL total object function as expected, it
is necessary to modify its object settings. Invoke the Object Menu, and
choose OBJECT SETTINGS.

A dialog similar to Figure 5.5 appears. Select the "Look Ahead" radio
button. According to the sketch report in Figure 5.7, the total salesis
displayed to two decimal places. Modify the "Number of Decimals’ edit
control from '0' to ‘2, and select the "OK" button to save the changes.

100 CodeReporter

Add the percentage

The original sketch report lists the sales personnel, their sales, and their
percentage of the total sales. The sales percentage is obtained by dividing a
salesperson's sales by the total sales. Since the total sales were calculated in
thetitle area, it may be used in the lower level part of the report.

A calculation object is needed to determine the sales percentage. Invoke the
"Calculation Object" diaog by selecting the "Calculation” button on the
button bar. Select the "New Calc" button to create a new calculation. Enter
PERCENTAGE for the calculation name and LOOKAHD-
>TOTSALES/TITLETOTAL() in the "Calculation Expression” edit control.
Sdlect the "OK™" button.

The new PERCENTAGE calculation is added to the "Calculation Object" list.
Select it with the left mouse button and place the calculation in the "Body"
group. To remove the "Caculation Object" dialog select the "Done" button.

Add Object Formatting

Viewing the Report

Select the newly created calculation output object, invoke its Object Menu
(right click on the object or press the Enter key), and choose the "Object
Settings' menu option. Since the percentage displayed in the Figure 5.7
sketch report has two decimal places and is a percentage, these attributes
must be set.

Choose the "Percentage” radio button in the Numeric Type section and
change the number of decimals for the object to two. Select "OK" to close
the dialog.

If the LOOKAHD->TOTSALES output object is to be displayed asa
currency value, its settings also must be modified. Invoke the "Object
Settings' dialog and select the "Currency” radio button in the Numeric Type
section.

The report design is complete. Use FILE | PRINT PREVIEW tO view the
completed report. Its contents should appear similar to the sketch report and
Figure 5.8, below.

Chapter 5: Output Objects 101

il LODKAHD | _ O] x|
Mest Close
20X Gales Inc. :I
Sales Sumwmary
Total Sales 48,802.65
Salesperson Name Total Sales Percentage of Total Sales
Smith, John 4432.10 4915
James, Donald 45,002.33 578525
Marm, Horace 415.00 17%
Levy, Eugene 42,010.31 2284
Stein, Gotilieb 843067 439%
Wayme, Jonathan 4801.25 9.10%
Cypher, Scott 420.99 243
2 v 4
Figure 5.8 Look Ahead Output

Numbers

When an output object evaluates to a numeric value -- whether it is a numeric
field object, an arithmetic calculation, atotal, or a numeric dBASE
expression -- the output of the object can be specially formatted.

Numeric Types
CodeReporter can output numeric valuesin four different ways, as:
a straight number (no additional formatting),
acurrency value,
a percentage, and
an exponent.
Each different type displays the same value differently.
Number

All numeric values, if necessary, are outputted using thousand separators
and/or adecimal point. The characters used for these items are under the
control of the report and are set in the "Report Preferences’ dialog. See
Preferences in the Customizing Reports chapter for information on changing
these values.

Currency

102 CodeReporter

Percent

Exponent

A numeric value may be formatted as a currency value by selecting the
"Currency" radio button in the "Object Settings’ dialog. Doing so causes
CodeReporter to include the currency symbol (default is'$) before the actua
number. The currency symbol is under the control of the report and is set in
the "Report Preferences’ dialog box. See Preferencesin the Customizing
Reports chapter for more information.

A number formatted as a percentage is multiplied by one hundred, and the
percent symbol ('%') is placed immediately following the number.

A number may be converted into scientific notation and outputted in the
format n.nnnnn e xx, where n is the numeric value, and x is the exponential
value. When using thisformat, it is very important to set the appropriate
decimals setting (see below).

Negative Numbers

By default, CodeReporter displays negative numeric values with aminus sign
(-) preceding the value. Certain reports may require negative values to be
outputted within brackets. Thisis accomplished by selecting the "Use
Brackets' radio button in the "Object Settings' dialog.

Without Brackets With Brackets
-1234.56 (1234.56)

Leading Zero

Fractional numbers (those between 1 and -1) are represented by the decimal
point character and the fractional number. For some objects, it may be
desirable to have a zero placed before these types of numbers. Selecting the
"Leading Zero" radio button in the "Object Settings' dialog causes
CodeReporter to place a zero before the decimal point character.

Leading Zero No Leading Zero
0.3 3
333 333
-0.3 -3
Table 5.1 Leading zero
Display Zero

By default, CodeReporter displays numeric output objects that have a zero
value. However, desdlecting the "Display Zero" radio button in the "Object

Chapter 5: Output Objects 103

Settings' dialog box causes the numeric output object to be omitted from the
report if it has a zero value.

Decimals

Dates

The number of decimal places outputted for numeric objectsis controlled by
the "Number of Decimals' edit control in the "Object Settings' dialog box.
The default number of decimalsis zero (except for numeric field objects,
which use the field's number of decimals).

If the number to be outputted has a greater precision (more decimal places)
than alowed by the decimals setting, the outputted number is rounded.

Rounding does not affect the actual value of the number with regards to
totals. When rounding occurs, it is possible to have a column of numbers
that, due to rounding, do not add up to a total output object for that column.

Date fields in a database are stored in away that makes them easy to sort:
January 2, 1992 is'19920102' in the database, January 3, 1992 is '19920103'
in the database and so on. However, in printed reports, it is more intuitive to
read ‘January 2, 1992' or '02 Jan 1992' than '19920102".

CodeReporter provides the flexibility of determining which format should be
used to output date objects.

Date Pictures

The output format of a date value is represented by a date picture string.
This string can contain severa formatting characters and/or 'other
characters. The formatting characters are:

C Century. A 'C' represents the first digit of the century. If two 'C's
appear together, then both digits of the century are represented.
Additional 'C's are not used as formatting characters.

Y Year. A'Y'representsthefirst digit of the year. If two "Y's appear
together, both digits of the year are outputted. Additional 'Y's are not
used as formatting characters.

M Month. One or two 'M's represent the numeric digits of the month. If
there are more than two consecutive 'M's, a character representation of
the month is returned.

D Day. One or two 'D's represent the numeric digits of day of the month.
Additional 'D's are not used as formatting characters.

Other Characters. Any character which is not mentioned aboveis
placed in the date string when it is outputted.

July 4, 1776, for example, would be outputted differently using different
picture formatting:

104 CodeReporter

FORMAT OuUTPUT
MMMMMMMM DD, CCYY July 04,1776
YY/MMMMMMMM/DD 76/duly /04
MM DD YY CC 07047617

Default Date Format

CodeReporter uses a default picture format of MM/Y'Y/DD for &l objects
outputting a date value. The report's default date format may be modified by
changing the "Default Date Format" edit control in the "Report Preferences’
didog box. The default date format may also be overridden on an object-by-
object basis, by changing the "Date Format" edit contral (within the "Object
Settings' dialog -- not shown in Figure 5.5.)

Using the Default Date Format

The default date format is automatically used when a date output object is
created. The object retains the default date format throughout its life (unless
the object's "Date Format" edit control is changed) even if the default date
format for the report is changed at alater time.

If an object's date format is completely deleted and the "OK™ button is
salected, the date format reverts to the current default date format.

Display Once

In some cases it may be desirable to output an object occasionally -- when its
value changes -- instead of outputting it every time its group resets. For
example, Figure 5.9 displays a simple report displaying the contents of a data
file. Instead of outputting the same month for each line of the report, the
month is only outputted when it changes.

Thistype of selective output can be accomplished by using the DispLAY ONCE
Object Menu item. Thisinvokes the "Object Display Suppression.” Select
the "Display Once" check box and enter an expression to be used to suppress
the output of the object. This expression is evaluated when the group reset
condition occurs, and if its value has changed from the previous reset
condition, it is outputted.

To vary the output using a true/false condition, see the Suppressing an
Area section in the Areas chapter.

The DBF->MONTH output object in Figure 5.9 uses the 'Display Once'
option with a suppression expression containing the same value as outputted:
DBF->MONTH. When the first 'January’ entry is outputted, the month is
outputted. The second entry, however, does not change the value of DBF-
>MONTH's display once condition, and so the month is not outputted.

Chapter 5: Output Objects 105

ReponT Deslgi

Field Qlyjecty
"TYBE -=MONTH' object Lwesr Disblay Once
CULE AL SADDY Ery Lervv exbresser ol
DEBF = MOMNTH

January 200 Trucks
100 Cars
150 Mopeds

wcihv value duanges, so monthv iy cuipuited.

mevithe vialiie derey et chaoungee; sor
FACH IR g it criatpidtTed.:

February 150 Cars wcii value chetnges, sor vt iy cidpuited.

Figure 5.9 Display Once Example

To change the display once condition for an object or to remove it, select the
DispLAY ONCE Object Menu option to invoke the "Object Display
Suppression” dialog box. Make the desired changes to the suppression
condition, or deselect the "Display Once" check box to display the output
object every time the group resets.

All output object types may be set to display once.

Text Objects

The simplest type of output object is the static text object. A static text
object consists of astring of aphanumeric text which is reproduced verbatim
in the report.

As such, they are often used to identify the report (such as atitle), to identify
report elements that may not be totally clear, or to bring attention to a part of
the report.

CodeReporter is put into insertion mode for Text objects by selecting the
OBJECT | TEXT menu item, or the "Text" button. When atext object is placed,
the "Enter Text for Text Object” dialog is invoked.

106 CodeReporter

Text objects are also created when text is placed in the Windows clipboard
from another application, such as a word processor, and CodeReporter's Epit
| PASTE menu option is selected.

Lines and Frames

Another way to bring attention to a section of the report or to set it apart
from other sectionsis to use a static line or frame. Lines can either be
horizontal or vertical. Frames are smply rectangles which may befilled, or
may have rounded corners. See Figure 5.10 for an illustration of the different
types of lines and frames.

Lines

Line Thickness

The creation of a horizontal line is accomplished by selecting the "H-Line"
button (or the OBJECT | HORIZONTAL LINE menu option) and clicking the
mouse where the line isto appear. In the same manner, avertical lineis
created using the "V-Line" button (or the OBJECT | VERTICAL LINE Mmenu
option).

Lines have a default length and width which may be modified by using the
OBJECT SETTINGS Object Menu selection to invoke the "Object Settings®
didog box. Thisdialog isused to increase the thickness of the line, and to
changeits color. (See Line Thickness, below, and the Color sub-section, also
below.)

Thethickness of alineis set in the "Thickness" edit control of the "Object
Settings' dialog. The thickness of lines are set in pixels -- the smallest unit
available on a computer screen.

Line Length
The length of aline may by changed by using the line's sizing handlesto drag
it to the new length, or by changing the value in the "Length" edit control of
the "Object Settings' dialog.

Frames

Corners

Frames are a specia type of line object. Frames are rectangles which may be
used to offset a pecial piece of information in a report.

A frame object may be created by selecting the "Frame" button from the
button bar, or by selecting the OsJecT | FRAME menu option. When aframe
is created, it has a default height and width, has square corners and is hollow.
The frame's sizing handles may be used to change the height and width.

The thickness of the line used to draw the rectangle may be modified by
changing the "Thickness' edit control in the "Object Settings' dialog.

Filled

Chapter 5: Output Objects 107

The corners of frame objects are square by default. If rounded corners are
desired, select the "Rounded Corners' radio button in the "Object Settings'
diaog.

A filled frame is much like avery thick line. The inside of the rectangle is
filled with the color of the style used when the frame is created. The
difference between afilled frame and a very thick line is that a frame may be
sized vertically and horizontally using the sizing handles, while aline may
only be sized in one direction.

A frame may befilled by selecting the "Filled" radio button in the " Object
Settings' dialog box.

De-sdlecting the "Filled" or "Rounded Corners' radio button makes the frame
hollow or have square corners, respectively.

Color

Lines and frames may have a color associated with them in the same manner
as other output objects, by selecting a style that contains the desired color.
Lines and frames only use the color portion of the style and ignore the
typeface, the point size, etc. See the Styles chapter for more information on
creating and modifying styles.

Objects Within

Graphics

Frames (and thick lines) are often used to visually group output objects
together. As mentioned in Objects Within Objects in the Creating Objects
section, above, an object that completely surrounds another object is said to
contain the second object.

Frames often do this, since they are usually placed around other output
objects. When using filled frames, two items should be noted:

1. Thewhiterectangle that is visible around an output object placed within
the frame (in design mode) is not outputted when the report is outputted.
It merely shows the outline and sizing handles of the interior output
objects.

2. Output objects within afilled frame should not use a style that has the
same color as used to fill the frame. Black text on afilled black frame,
for example, resultsin the text being "invisible" This often occurs
when the Style popup menu is used to select a style for the frame --
since dl interior objects are aso selected when the frame is selected,
their style is set to the same style as the frame.

CodeReporter may include graphical elementsinto reports either statically or dynamically.
These graphics may be anything from a company logo to a series of personnel photos.

108 CodeReporter

(i CodeReporter 2.0: UNTITLED Hi=l E3
File align Edit “iew BEeport Relation Group Area Object Swle Help
Field | Expressiunl Total | Calculation I Textl H—Linel V-Line I Framel Nonel Printl Previewl |

DT T T T T O T T (O T O O T

Group: Body Header Argal of 1

[Hollow, rounded-corner Frame J _

Filled, square-corner ,\

Frame
Vertical Line
Horizontal Line
WS Senif m- Body : Area 1, Height 1.500 in.
Figure 5.10 Lines and Frames

Average (boring) reports can be made visually exciting by the inclusion of
graphical elements. For example, through the use of suppressed areas and
different graphical elements the "bottom line" of afinancial report could
display a"thumbs-up" or a"thumbs-down" depending upon the numeric
outcome.

CodeReporter currently supports Windows bitmap graphics in three ways:
1. satically with bitmaps pasted in the report,
2. datcaly by referencing afile name, and

3. dynamically using a datafile field which contains a file name.

Smaller bitmaps are generally outputted better than larger ones. Due to
the scaling involved in shrinking high resolution bitmap images (such as
scanned images), it is recommended that low resolution images be used.

Creating a Graphic Object

Graphic objects are created with the OsJecT | GRAPHIC menu option, or by
pasting a graphic element from the clipboard. The former method is used to
create graphic objects with aminimum of additional disk space necessary.
The later creates a static graphic object that is actually stored within a
CodeReporter-created bitmap file.

Pasting Graphics

Other Windows applications, such as Windows Paintbrush, allow usersto
create customized bitmap images. Once the image is designed, it may be
placed in the Windows clipboard (usually with the application’s cut or copy
command) where it is accessible to CodeReporter. Once in the clipboard, this
image may be pasted into a report as a static graphic object using the EbiT |
PASTE menu option.

Using the menu

Figure 5.11

Chapter 5: Output Objects 109

The bitmaps for pasted graphic objects are displayed in the report design
screen.

Bitmaps that are pasted into a report are stored within an external bitmap
file. Since this bitmap file is created without user input, it is given a unique
-- and generally obscure -- name. If the pasted bitmap is already saved in a
file using another application, this process creates an unnecessary
duplicate file.

It is usually more appropriate to use the source application to save the
bitmap as a bitmap file (*.bmp) and use the OBJECT | GRAPHIC menu option
to create a graphic output object that accesses the file.

The OBJECT | GRAPHIC menu option invokes the " Specify Graphic Object
Type" dialog where the two types of objects may be selected.

When the "Static Graphic" check box is chosen and a graphic element is
placed, CodeReporter prompts for the file name of the bitmap file and
displays the bitmap within the CodeReporter design screen. CodeReporter
only stores the specified file name within the report file, and not the actual
bitmap image. This alows the report designer the flexibility of changing a
graphic object in areport smply by atering the referenced bitmap file.

Specify Graphic Object Type I

V¥ Static Graphic [*.BMP file |

[” Dynamic Graphic [referenced in datafile)

COMPID r

0K i Cancel |

Specify Graphic Object Type Dialog

The "Dynamic Graphic" check box, when chosen, enables the drop down
combo box which contains al the field names in the current composite data
file. Once afield nameis chosen, the graphic object may be placed. Since
the referenced field does not contain a value until the report is outputted (and
then it may constantly change), CodeReporter displays the dynamic graphic
object asaregular field in the design screen.

It is important to appropriately size a dynamic graphic output object, since
CodeReporter stretches or reduces the bitmap so that it entirely fits within
the specified size. In addition, ensure that all bitmaps referenced by the
field are of the same size. Failure to do so can cause some graphic
objects to be displayed "correctly" while others may be distorted.

110 CodeReporter

Scaling Graphic Objects

Graphic images within CodeReporter are automatically scaled to the size of
the output object. That is, bitmap images that are larger than the current size
of the output object are reduced, while images that are smaller are enlarged.

This activity occurs on each axis. If an imagethat istall and skinny is pasted
into a square graphic abject, the image is made short and fat. CodeReporter
does not maintain an image's aspect ratio, but manipulates the image to fit the
size of the graphic object.

The size and the scaling of a graphic object is controlled in the same manner
as aregular output object: through the "Object Settings' dialog, or by the
sizing handles.

(i CodeReporter 2.0: UNTITLED Hi=l E3

File align Edit “iew BEeport Relation Group Area Object Swle Help

Field | Expressiunl Total | Calculation ! Textl H—Linel V-Line I Framel Nonel Printl Previewl |

I } I | :f I ? I 1 I ? I ﬁ I | i’ | 4 | qJ

[TTT T T T T T T [T T A T T T T T T T [T T A A T T T P T [T T R T TP T A T T P T T T T T e T T T P T AT T T T T T T T T T [TT T AT T T IR T T AT TT [TTTITTT TTITTT]1

mﬁroun: Eiody Header Areal of 1 d
| | |] L}

N

Canadian Cooler Company .

Creating Great Coolers Stnee 1975

MS Sernif

Figure 5.12 Static Graphic Object

Fields

Field objects reflect the contents of the composite record at the time of the
ared's group reset condition. 1f one or more fields need to be combined or
manipulated to arrive at the "appropriate” output -- such as combining first
and last name fields -- an expression output object should be used.

Placement
Fields from the composite data file are added to the report from the "Field
Objects’ floating list box, which isinvoked from the OBJecT | FIELD menu
item or the "Field" button.
Field objects may be placed individually, or severa field objects may be
placed at the sametime.

Single Selection

A single field may be added to the report by using the "Field Objects’ floating
list box to select the desired field, using the mouse to move the cursor to the

Multiple Selection

Chapter 5: Output Objects 111

desired spot, and clicking the left mouse button. The field, with an
approximate size and default settings, is placed in the desired spot.

When two or more fields are selected in the "Field Objects’ list box, the
"Field Layout” dialog box is invoked as the objects are placed in the design
screen. Shown below, this dialog provides several options as to the
placement of the output objects.

Field Layout |

Layout Direction

& Horizontal ™ ¥Yertical

 Wrap " Labels

Vertical Spacing 010 jq,

Horizontal Spacing 0.10f jq,

Ok Cancel

Figure 5.13 Field Layout Dialog

Layout Direction

Wrap

CodeReporter places the output objects either Ieft to right or top to bottom
from the insertion point, depending upon the "Layout Direction™" radio
buttons. These settings a so take into account the "Wrap" check box setting.

As the output objects are being inserted, CodeReporter checksto see if any
object extends beyond an edge of the report area in which they are placed.
Normally in this case, the object that extends beyond the edge is sized so that
it fits within the area, and insertion is terminated.

However, if the "Wrap" check box is set, CodeReporter changes the insertion
point back to the beginning coordinates and moves down or to the right
(depending upon the horizontal or vertical setting, respectively) and continues
to insert thefields. If it continues to run out of room in the area (if it hits the
lower right corner), CodeReporter may choose to vertically enlarge the area
so that all output objects may fit.

CodeReporter vertically enlarges the area if the "Layout Direction” radio
button is set to be vertical and the "Wrap" radio button is not selected, or if
the "Layout Direction" is horizontal and the "Wrap" radio button is selected.

112 CodeReporter

"Wrap" is set by default.
Labels

If the "Labels" check box is set, CodeReporter also inserts text objects
containing the field namesin a column to the left of the field objects.

Vertical and Horizontal Spacing

The space between the inserted field (and label) output objects is controlled
by the "Vertical Spacing” and "Horizontal Spacing” edit controls. Asa
default, the spacing is set to .1 inch, but it may be changed to any value. This
isauseful option for quickly placing output objects in reports which may be
outputted in an environment other than Windows where precise positioning is
important.

Memo Fields

Memo fields, which have their contents stored in a separate memo file,
behave exactly the same asregular fields. It isimportant to note that:

if the memo field is blank, the object is displayed with an empty value,

if the memo does not fill the entire size of the output object, the excess
space is wasted, and

if the memo islarger than the size of the output object, the excess
information is ignored.

Expressions

dBASE expressions which are needed only once or twice may be outputted
within the report using an expression output object. Simply put, an
expression object is used to output an evaluated expression in the report.

For example, if adatafile has separate first name and last name fields, but
within the report they are to appear in the format " Smith, John", an
expression output object containing the following expression could be used.

[TRI M DBF- >LAST_NAME) +' , ' +DBF- >FI RST_NANE

Creating

CodeReporter is put into insertion mode for expression output objects by
selecting the OBJECT | EXPRESSION menu option or by sdlecting the
"Expression” button. The mouse cursor then changes to indicate insertion
modeis active.

Position the mouse cursor within areport area and click the left mouse button
to place an expression output object.

CodeReporter prompts for the initial expression for the expression output
object using the "Easy Expression” diaog box (see the Expressions chapter

Chapter 5: Output Objects 113

for information on the "Easy Expression” dialog). Once an expression is
entered, select the "OK" button to complete the creation.

Calculations

A calculation performs a numerical or character-based computation that is
used in the report. These computations take the form of dBASE expressions.
In many cases a computation is used smply to add one or more datafile
fields together, but it may be more complex involving composite datafile
fields and/or dBASE functions. The calculation may be thought of as a
"short hand" way of referring to the computation it contains.

A calculation may be used in zero, one or multiple calculation output objects.
In addition once a calculation is defined, it may be used in any expression
within the entire report -- including sort expressions, query expressions,
expression output objects, relation expressions, etc.

For example, a calculation could figure out an employee'stotal pay using the
following formula:

[PAY- >REG_HRS* EMP- >RATE + PAY- >OT_HRS* ENP- SRATE* 1. 5

or format an employee'sfirst and last name using the following computation:

[TRIM EMP- >F_NAME) +' ' +EMP- >L_NAME

If areport was simply a payroll report that listed the employees names and
gross pay, it might not be necessary to define a calculation for the formula --
the expression might just as well be put in its own expression output object.
However, if the report also needed to display the total of all salaries paid
during the report or do other computations on the employee'stotal pay, a
calculation is suggested.

By using a calculation instead of retyping the computation in separate
expression objects, the report design time is shorter, and the report is easier to
modify and maintain.

If an expression is used more than once in a report, it is recommended that
a calculation be created.

A calculation may also include one or more calculations. That is, you may
nest one calculation within the definition of another calculation.

For example net pay is calculated from the total pay minus any deductions.
The caculation for net pay might then be:

[TOT_EMP_PAY() - DEDUCT()

where TOT_EMP_PAY/() and DEDUCT() are previously defined calculations.

Creating Calculations

A calculation is created by invoking the "Calculation Object” dialog box and
selecting the "New Calc" button. The "Create Calculations' dialog is
invoked.

114 CodeReporter

A caculation has two e ements, the calculation name and the calculation
expression. The calculation name is a character string that is used to
represent the computation.

It isthis name that appears within the "Calculations" list box in the "Easy
Expression” dialog. The calculation expression, as described above, may be
entered into the "Calculation Expression” edit control.

The name of a calculation may not have spaces within it. In the event that
the calculation name is entered with spaces, CodeReporter uses the
characters up to the first space as the name of the calculation.

Even though calculations are created through the OsJecT menu, it is not
necessary to have a calculation output object for every calculation. In fact, it
is very common to have calculations that are used only within other
calculations, expressions, and totals.

Deleting Calculations

Calculations are deleted from the "Calculation Object” dialog box. To delete
acaculation, select its name within the dialog's list box and select the "Delete
Calc" button. This removes the calculation, all calculations/totals that use
the calculation, and all output objects that use any of the removed
calculations and totals.

Deleting a calculation can quickly remove many related elements in a
report. Delete with care.

Calculation Objects

Totals

Once acalculation is created, a calculation output object may be placed by:

1. sdlecting the desired calculation name within the " Calculation Object”
diaog box,

2. positioning the mouse cursor to the desired spot within areport area,
and

3. gngleclicking the left mouse.

CodeReporter is automatically removed from insertion mode once the
calculation object is placed.

Deleting a calculation output object does not delete the calculation upon
which it was based.

A total givesthe report designer the ability to summarize the numerical data
obtained from a numeric calculation or numeric datafile field and output it
within the report. Essentialy, atotal is an output object that retainsits value
from one composite record to another -- using each composite record to
update its value.

Chapter 5: Output Objects 115

Totals are based upon previoudy created numeric calculations and numeric
datafilefields. Asaresult, multiple totals which are based upon the same
information may use the same calculation.

Unlike calculations, atotal may not exist without an object having been
created for it. Thisisadirect result of the nature of totals: atotal achieves
its value at a certain place and time within the report. For example, atotal of
sales for each employee changes its value from one employee to the next. A
reference to this total within the report title area, for example, would display
anon-existent value since at the beginning of the report the total has not yet
obtained a value.

A total output object within report wide expressions, such as the query
expression, makes no sense, since the value of the totd is not calculated until
the report is outputted. In this case, since areport is based on the composite
datafile, an attempt to limit the composite data file based upon the contents
of the report, creates alogical contradiction.

Totals are properly placed within the group footer for the subset of dataiit is
totaling -- unless it is alook ahead total, in which case it may be placed
within the group header area.

Creating a Total

A total output object is created through the "Total Calculations® dialog box
which isinvoked by sdlecting the OBJeCT | ToTAL menu option or the "Total"
button in the report design screen.

The"Tota Calculations' diaog box contains alist box which isfilled with
previously created numeric calculations and previously created totals. Total
output objects are placed within the report in the same manner as

caculations:
1. sdlect the desired calculation, total name, or numeric datafile filed within
the list box,

2. position the mouse cursor within the desired destination report area, and
3. click the left mouse button.

As an output object is placed, the "Total Settings' dialog (Figure 5.14) is
invoked.

116 CodeReporter

Figure 5.14
Name

Modity Total |

Total Name;
TOTALD

Calculation:
LOOKAHD->TOTSALES

Total Beset Expression:

Easy Expr |

* Sum " Minimum

DK

 Average " Maximum Cancel

Total Settings Dialog

Totals, like calculations, may be used in any dBASE expression within
CodeReporter; and thus each new total requires a unique name. This name
defaultsto "TOTALN", where n is an ascending number used to keep the tota
name unique. This name may be modified to be more descriptive of what the
total is actualy totaling.

When the total is used within other expressions, it is this name, followed by a
set of parentheses (), that identifies which total isto be used.

If the value of a total is needed in a dBASE expression, but does not need
to be outputted within the report, the total output object may be "hidden™
by changing its size so that it is too small to display any of its contents.

Types

The actual process involved in updating the total's value from composite
record to composite record depends upon the use of thetotal. A total may
maintain an arithmetic sum, an average, a maximum value, or a minimum
value.

Average

Maximum

Minimum

Chapter 5: Output Objects 117

A sum total adds the number returned from the evaluated calculation, total or
numeric field for each record to its preceding value.

If a total is used to simply count the number of records between total reset
conditions, base the total output object upon a calculation with a constant
value of one (1).

An average total stores the arithmetic mean for the evaluated calculation,
total, or numeric field. This mean (or average) is obtained by taking the sum
of the values for the records and dividing it by the number of records
encountered.

A maximum total stores the largest number encountered for the evaluated
caculation, total, or numeric field.

A minimum total stores the smallest number encountered for the evaluated
caculation, total or numeric field.

Reset Expression

Subtotals

Thetotal reset expression is used to create totals that summarize subsets of
information within the composite data file. For example, the total that
describes the amount of sales made by a certain salesperson is atotal for the
salesperson's subset of sales.

Usualy, the total reset expression isthe same as used in the reset expression
for the group with which the total islogically related. For example, areport
that lists sales may be sorted and grouped by months. A total of the sales for
amonth would have a total reset expression of DBF->MONTH -- which
would be the same as the month group's expression. See Figure 5.15.

The total reset expression need not be the same as the group reset expression
for the group it iswithin and may reset in an entirely different manner.

Thetotal reset expression dictates when atotal isreset to itsinitial value.
The reset expression is evaluated for each composite record in the composite
datafile, and when the value of the evaluated reset expression changes, the
total isreset so that a new accumulation may begin.

The value with which the total is reset varies, depending upon the type of
total. Sum and average totals are reset to zero, while the maximum and
minimum totals are reset to the smallest and largest numbers possible

(respectively).

118 CodeReporter

Report-wide Totals

A report wide total, or grand total, is achieved by using an empty total reset
expression. That is, thetotal is only reset when the report begins, so when
the total object is outputted in the report summary (or titleif it is alook ahead
total), it totals the entire report.

Running Totals

A tota output object that is placed in the same area as the information that it
istotaling is called arunning total. Since the total is constantly being
updated, each time the group resets (and the output objects within the group's
areas are outputted) the total output object contains a new value.

Deleting a Total

Deleting atotal output object deletes the total upon which the object is based.
Doing so aso removes all other totals, calculations, expressions, and objects
that contain the total. This can cause further deletions, and cause a cascading
effect which might result in the ruination of areport. Delete total objects
with care.

Look Ahead Totals

Look ahead totals are used to output the summary of a subset before the
detail lines of the subset are actually outputted. Thisimportant concept,
along with an example of using look aheads, isillustrated in the Look Ahead

section of this chapter (above).
Month/Day Sales Total Grand Total
January MT .
13 'l
14 e¥Y
15 fﬂﬂ:'kp(gﬁ
20 ey
21 .
Feh 94.00
®R02Y $20.00 20.00
14 19.00 39.00
28 15.00 54.00 g
54.00
$148.00 Neortotalreset expressiovy
Figure 5.15 Total Sample Report

Conditional Totals

Totals may be associated with a dBASE expression that determines under
which conditions the total isto be accumulated. By setting up a conditional

Chapter 5: Output Objects 119

accumul ation condition, the total output object may update its value on some
composite records in the composite data file, while ignoring others. Perhaps
it isimportant to only accumulate the total when afield contains a certain
value, or only accumulate the total for a master record related to severd
scanned records. Using a conditional total makes this possible.

A conditional accumulation may be established by invoking atotal output
object's Object Menu and selecting the ConDITIONAL TOTAL menu option.
This action invokes the "Conditional Total" dialog, in which the total's
condition may be entered.

Total Condition

The"Total Condition" entry window is used to enter the dBASE expression
which is used to determine when the total is accumulated. This expression
may evaluate to any dBASE type, excluding memo.

Conditional Total |

Total Name: TOTALD

Calculation: LOOKAHD->TOTSALES

Total Condition:

Easy Expr
" Logical Condition &« Changed Value
oK Cancel
Figure 5.16 Conditional Total Dialog Box

The "Logica Condition" and "Changed Value" radio buttons determine how
the total condition is used to selectively update the total's value.

Logical Condition

If the"Logical Condition" radio button is selected and the total condition
(which must evaluate to alogical value) evaluates to a . TRUE. value, the total

120 CodeReporter

Changed Value

is updated with the contents of the current composite record. If the
expression evaluatesto a .FALSE. value, the current composite record is
ignored.

If the "Changed Value' radio button is selected, the total is updated only
when the evaluated total condition changes. For example, if thereis a scan
relation, the contents of the master data file are repeated in the composite
datafile for each record in the related dave datafile. A total output object
that depends upon afield within the master data file would be accumul ated
"incorrectly" since the master datafile field would be repeated several times.

Setting the "Changed Value' radio button and using the total condition that
corresponds to the master data file's record change (or the master expression
in the scan relation), the total would be accumulated " correctly.”

Chapter 6: Columnar Report Wizard 121

6. Columnar Report Wizard

CodeReporter provides a quick and easy automatic report design option
through the " Columnar Report Wizard" dialog. Thisdialog providesa
means of rapid report creation -- including the insertion of fields in the
relation set, the creation of group headers and footers, and automatic
totaling and subtotaling of numeric fields.

Columnar Report Wizard I
Fields Included Fields
INYOICES->CUSTID i dlE
INVOICES->CREDIT
INVOICES->DEBIT Remove |
INVOICES->ENTERDATE
CUST->CUSTID Add All I
CUST->NAME o
CUST->ADDRESS ~| Rem.All |
Group Beset Expressions For Subtotals Sort Expr.

Add Query Expr.

Remowve OK

i

Cancel

Figure 6.1 Columnar Report Wizard

Invoking Report Wizard

The "Columnar Report Wizard" dialog box isinvoked from the REPORT |
COLUMNAR REPORT WizarD menu option. If the current report already
contains some output objects, they are destroyed when the "Columnar Report
Wizard" dialog box isinvoked. Before doing so, however, CodeReporter
prompts the user to save the file or cancel the columnar report.

122 CodeReporter

Creating a Report

The "Columnar Report Wizard" dialog is used to add selected fields to the
report, to create subtotals of numeric fields, and to query and sort the
composite datafile. Once the report is defined within the "Columnar Report
Wizard" dialog, use the "OK" button to create the report. The "Cancel”
button may be used to exit the dialog without creating a report.

Adding Fields

All the fields of the composite datafile are listed in the "Fields" list box.
Fields can be multiply selected in the "Fields" list box and added to the report
by sdlecting the "Add" button. "Add All" automatically adds every field in
the composite data file to the report.

The fields are placed within the report, from left to right, in the order they
appear in the "Included Fields' list box. If afield is added to the "Included
Fields' list box out of the desired order, or was added in error, the "Remove"
and "Rem. All" may be used to remove the field (or dl fields) from the report.

If more fields are inserted within the report than may fit upon one line, the
field that exceeds the page margin is truncated, and the excess fields are
placed on a second line.

Subtotals

The report created by the "Columnar Report Wizard" dialog automatically
creates report-wide totals for all numeric fields and places them in the report
summary area. If subtotals are desired for subsets of the composite datafile,
they may be created by defining the subset for which they are associated.

Thisis done by using the "Add" button in the "Group Reset Expressions for
Subtotals’ section of the dialog. The "Add" button invokes the "Easy
Expression” dialog in which a group expression may be entered to describe
the subset for which the subtotal is desired. The "Columnar Report Wizard"
automatically creates a group (named "Groupn” where n is the number of the
group) for this expression and places the subtotals within this group's footer
area.

The subtotal groups are added to the top of the "Subtotal On" list box. The
groups, therefore, are added from the innermost to the outermost.

If a group is added in the wrong place, either use the "Remove" button and
"Add" button to correct the mistake, or, once the report is created, modify
the group's position.

Chapter 6: Columnar Report Wizard 123

Sorting and Querying

Example

The sort expression and query expression for the report may be specified
within the "Columnar Report Wizard" dialog using the "Sort Expr." and
"Query Expr." buttons. These buttons invoke the "Easy Expression” dialog
in which the expressions may be entered. For information on sorting and
guerying the composite datafile, see .

The sort and query expressions previously defined are reflected in the
"Easy Expression" dialogs. If these expressions are no longer
appropriate, they may be removed by deleting the expression in the "Easy
Expression” dialogs.

As an example of asimple columnar report, the following demonstrates the
steps necessary to create a sales report for the 'ATHA' company, including
subtotals for every store.

Locate SALES.DBF

The data file necessary for this sales report is SALES.DBF, which is |ocated
in the \EXAMPLES directory. Use the FiLE | NEw menu option to create a
new report, and the "Select Data File" dialog to locate SALES.DBF.

For simplicity sake, this report does not include relations to the

COMPANY .DBF and STORES.DBF datafiles. Asaresult, the datafor the
company and store that generated the sale are outputted as stored in
SALES.DBF -- as codes.

Report Wizard Dialog

Add Fields

Begin the report wizard process by selecting the REPORT | COLUMNAR
REPORT WizARD menu option to invoke the "Columnar Report Wizard"
diaog.

Most of the fields of the SALES.DBF datafile areto beincluded within the
report. Sincethe report is primarily interested in the financia aspects of the
stores and not the actual products sold, PRODCODE is not to be included.

The fields of SALES.DBF (COMPID, STOREID, AMOUNT, and
PRODCODE) are all listed within the "Fields" list box. Single click on the
"Add All" button to add all of the fields to the "Included Fields' list box.
PRODCODE, which was aso added, should be removed by selecting it from
within the "Included Fields" list box, and single clicking the "Remove"
button. This removes the field from the "Included Fields' list box and adds it
again to the "Fields" list box.

124 CodeReporter

Add Subtotals

Sorting

Query

The report specification indicates that subtotals are desired for every store. A
logical subset of the composite datafileis created by the STOREID field in
the same manner that the LOC created a subset within Figure 3.1 in the
Groups chapter.

The expression that describes this subset is:
SALES->STOREID

(Normally, the expression would also include the magjor subset of COMPID,
but since a query is going to be used to limit the company to 'ATHA', the
above expression is sufficient).

Usethe"Add" button within the "Group Reset Expressions for Subtotals'
areato invoke the "Easy Expression” dialog and enter this expression. The
expression should appear within the "Group Reset Expressions for Subtotals'
list box.

The records within SALES.DBF most likely are not entered in a sorted order
for every store. It istherefore necessary to sort the datafile. Thisis
accomplished by selecting the " Sort Expr." button and entering the sort
expression:

SALES->STOREID

The sort expression may safely ignore the COMPID, the major subset of the
sales data file, since the specification of the report indicated only the'ATHA'
company sales were to be included within the report.

The limiting of the composite data file is done with a query expression
SALES->COMPID='"ATHA". Select the "Query Expr." button and enter the
expression in the "Easy Expression” dialog.

Viewing the Report

After the sort and query expressions are entered, the columnar report is
created by selecting the "OK" button. Display the report by selecting the FiLE
| PRINT PREVIEW menu option. The fields and totals correctly appear within
the output window.

Polish

The instant report is by no means ready to be published. There are severd
things that may be done to "polish” the report -- including atering the styles
and typefaces, adding descriptive labels to the totals, adding report titles, etc.
The instant report may be modified in the same manner as any report created
in the standard manner.

Chapter 6: Columnar Report Wizard 125

/. Expressions

Much of the interaction between CodeReporter and the report designer is
done through the use of dBASE expressions. dBASE expressions are,
conceptually, a macro language used to describe some operation or identify
some information.

dBASE expressions are much like arithmetic equations. Vaues may be
added together to get a result, equations can be tested for validity (true or
fase), etc. Like arithmetic, dBASE expressions follow severa rules. Unlike
arithmetic which only deals with numeric values, dBASE expressions have
severa different types of values, including characters and dates.

Those familiar with dBASE or dBA SE expressions may skip ahead to the
Section.

General dBASE Expression Information

All dBASE expressions return a value of a specific type. Thistype can be
Numeric, Character, Date or Logical.

A common form of a dBASE expression is the name of afield. In this case,
the type of the dBASE expression is the type of the field.

Field names, constants, and functions may al be used as parts of a dBASE
expression. These parts can be combined with other functions or with
operators.

Example dBASE Expression:

[UPPER(DBF- >FI ELD_NANE)

Returns

In arithmetic, 1+2 is considered a statement that represents the same value as
3. 4x306 isthe same as 2. In dBASE terminology, these arithmetic
statements are said to return avalue. The numbers are combined in an
arithmetically consistent fashion and the result is obtained.

Equations

If a student were given atrue or false test and he/she were told to evaluate
1+2 = 5, he/she would correctly mark it false. 1+2=3 should be marked as
true. Both sides of the equals sign are evaluated separately and their return
values are compared. In thefirst case 1+2 evaluates to 3 and 5 evaluates to
5. The statement that 3 isthe same as 5 isincorrect, so it is considered false.
With 1+2=3, however, both sides evaluate to 3. dBASE expressions where

126 CodeReporter

both sides of the equation are provided are called logical expressions.
Logical expressions use the relational operators listed below.

Field Name Qualifier

Since most reports have a multitude of datafiles, it is necessary to qualify a
field name in a dBASE expression by specifying the data file. Observe above
that the first part of afield name, the qualifier, specifiesadatafile alias. The
datafile aliasis usualy just the name of the datafile. The "->" terminates the
data file name, and marks the beginning of the actual field name.

dBASE Expression Constants

dBASE Expressions can consist of Numeric, Character or Logical constants.
However, dBASE expressions which are only made up of constants are
usualy not very useful. Constants are usually used within amore
complicated dBASE expression.

A Numeric constant is anumber. For example, 5, 7.3, and 18 are al valid
dBA SE expressions containing Numeric constants.

Character constants are characters with quote marks around them. 'Thisis
data, 'John Smith', and ' "John Smith" * are all examples of dBASE
expressions containing Character constants. If you wish to specify a
character constant with a single quote or a double quote contained inside it,
use the other type of quote to mark the Character constant. For example,
"Man's' and '"Ok" ' are both legitimate Character constants.

Unless otherwise specified, all dBASE Character constants in this manual
are denoted by single quote characters.

Constants .TRUE. and .FALSE. arethe only legitimate Logical constants.
Constants .T. and .F. are legitimate abbreviations.

A date constant may be obtained using the STOD() dBASE function with a
character constant as a parameter.

dBASE Expression Operators

Operatorslike'+', ' * ', and '<' are used to manipulate constants and fields.
For example, 3+8 is an example of a dBASE expression in which the Add
operator acts on two numeric constants to return the numeric value 11.

The values upon which an operator acts must have a type appropriate for the
operator. For example, the divide '/ operator acts upon two numeric values.

Chapter 7: Expressions 127

Precedence

Operators have a precedence which specifies operator evaluation order. The
precedence of each operator is specified in the following tables which
describe the various operators. The higher the precedence, the earlier the
operation will be performed. For example, 'divide' has a precedence of 6 and
‘plus has a precedence of 5 which means 'divide' is evaluated before 'plus.
Conseguently, 1+4/2 is 3.

Evaluation order can be made explicit by using brackets. For example, 1+2 *
3returns 7 and (1+2) * 3 returns 9.

Operator Name Symboal Precedence

Add + 5

Subtract - 5

Multiply * 6

Divide / 6

Exponentiation ** or A 7
Table7.1

Character Operators

There are two character operators, named "Concatenate " and "Concatenate
I1", which combine two character valuesinto one. They are distinguished
from the Add and Subtract operators by the types of the values they operate

on.

Operator Name Symboal Precedence
Concatenate | + 5
Concatenate |1 - 5

Table 7.2

Examples:
‘John '+ 'Smith' becomes 'John Smith"
ABC' + 'DEF becomes 'ABCDEF

Concatenate 11 is dightly different as any spaces at the end of the first
Character value are moved to the end of the result.

‘John’ - 'Smith ' becomes 'JohnSmith
"ABC' - 'DEF becomes 'ABCDEF
"A'-'D ' becomes 'AD

128 CodeReporter

Relational Operators

Relational Operators are operators which return aLogical result (true or
fase). All operators, except Contained Within, operate on Numeric,
Character or Date values. Contain Within operates on two character values
and returns true if the first is contained within in the second.

Operator Name Symbol Precedence
Equal To = 4
Not Equal To <> or# 4
Less Than < 4
Greater Than > 4
Less Than or Equal To <= 4
Greater Than or Equal To >= 4
Contained Within $ 4
Table 7.3

Examples:
'‘CD'$'ABCD' returns.T.
8<7 returns .F.
5=4+1 returns .T.
Logical Operators
Logical Operators return aLogical Result and operate on two Logical values.

Operator Name Symbol Precedence
Not NOT. 3
And AND. 2
Or .OR. 1
Table 7.4
Examples
NOT. .T. returns .F.

.T. .AND. .F. returns .F.

NOT.(1+2=3) returns.F.

Chapter 7: Expressions 129

Easy Expression Entry

In many parts of CodeReporter, the report designer is prompted for a dBASE
expression. For example: sorting, querying, and relating data files all require
one or more dBA SE expressions.

In the instances where an expression is necessary, CodeReporter generaly
provides two ways this expression may be obtained: direct entry or through
the "Easy Expression” diaog.

Create Calculation |

Calculation Name:

Calculation Expression:

Easy Expr. I Ok Cancel

Figure 7.1 Create Calculation Dialog

Figure 7.1 above, illustrates a typical request for a dBASE expression. The
"Create Calculation" dialog includes an area ("Calculation Expression” edit
control) in which the expression may be directly typed. To usethisarea,
simply position the cursor within the area and enter the appropriate dBASE
expression.

This dialog also shows an entry point for the "Easy Expression” diaog -- the
"Easy Expr." button. Pressing this button invokes the "Easy Expression”
dialog for point-and-click entry of a dBASE expression. Upon completion,
the expression entered in the "Easy Expression” diaog is placed within the
"Calculation Expression” edit control.

Easy Expression Entry Dialog

The "Easy Expression” dialog provides the report designer with a point-and-
click way to build adBASE expression. The "Expression” edit control
contains the expression as it is constructed. Double clicking upon any of the
dialog box's list boxes inserts that item into the expression at the current
position of the insertion caret. dBASE operators may be inserted by single
clicking the button containing the desired operator.

The advantage of using the "Easy Expression” dialog liesin the speed in
which an expression may be constructed. Fields are automatically added with
their data file qualifiers, functions are automatically added with their

130 CodeReporter

parentheses and commeas, etc. The list boxes contain alist of every field in
the composite data file, every supported dBASE function, and al the created
calculations and totals.

In addition, descriptive information can be obtained about any field or
function by single clicking on the item. The descriptive information is
displayed within the bottom edit control.

-

Expression:
TRIM[CUST->NAME]+ "' +CUST->CUSTID |- | 0K 1
Cancel i
Yerify 1
|
Fields Functions Calculations sl ﬂ (T
CREDIT «| [MONTH - A] U= I
DEBIT PAGEMO L= =i e ! g
EHMTERDATE RECCOUNT
RECHO AND OR NOT
- CUST - STOD
CLUSTID STR |
NAME SUBSTR . O Totals
ADDRESS TIME | & Calculations
CITYSTZIR TRIK s |
= = | Tag Expressions
|
=
7|

Figure 7.2 Easy Expression Dialog

Using Easy Expression

The "Easy Expression” dialog box is simple to use. The controls work
together to provide a complete point-and-click environment.

Expression
The "Expression” edit control may be used to manualy type in or edit an
expression or part of an expression. The dialog's other controls perform their
insertions in this edit control at the current caret position. The caret isthe
flashing vertical line that appears within the control when it has focus.

Fields

The"Fields’ list box contains al of the fields of the composite datafile. The
fields from the individual data files are separated by a"-- 00000 --", where
X000XXX 1S the name of the datafile.

Functions

Calculations

Chapter 7: Expressions 131

When afield is selected with asingle click of the mouse (or when focus is
shifted to the list box), the information window displays information about
the field.

A double click of the mouse on afield inserts the field name (with its field
name qualifier) within the "Expression" edit control.

The "Functions’ list box contains al of the supported dBASE functions that
may be placed within an expression.

When afunction is selected, the information window displays a short
description of the function -- including parameters (if any) and the function's
return type.

A double click on one of the functions inserts that function within the
"Expression” edit control and moves the insertion caret between the function's
parentheses.

The"Calculations' list box contains al of the previously defined report
calculations. The calculation entered into the expression is evaluated anew
when the expression isevaluated. It is possible to include a calculation
within the expression of other calculations or totals. This "nesting" can
provide very flexible report design.

Thislist box aso doubles for the "Tag Expressions' and "Totals" list boxes.
These list boxes are made available when the appropriate radio button is
selected.

Tag expressions do not have the necessary field name qualifiers required
for CodeReporter expressions. These qualifiers must be entered manually
if a tag expression is to be used.

Verifying an Expression

An expression entered in the "Expression” edit control can be verified by
using the "Verify" button. "Verify" attempts to evaluate the expression. If it
fails for any reason -- including incompatible types, incorrect number of
parameters for a function, or unrecognized symbols -- CodeReporter reports
the errors. If, on the other hand, an expression is correct, CodeReporter
indicates that there were no errors in the expression.

Exiting Easy Expression

Once an expression is complete and verified, the "OK" button may be used to
close the "Easy Expression” dialog. "Cancel" may aso be used, but any
changes to the expression are lost.

Chapter 8: Styles 133

8. Styles

A professionally designed report not only has dl of the necessary
information, but also formats it in an easily comprehensible manner. One
aspect of avisually appealing report is the typeface, size and color of the text
within the report. By using different typefaces, sizes, and colors, important
output objects (such as column titles, totals, negative numbers, etc.) can be
emphasized.

CodeReporter provides this functionality through the use of styles. A style
simply identifies atypeface, size, color, and special characteristics
(underlining, bold, italics, etc) by associating them with aname. Whenever
the same appearance is desired for an output object, it isn't necessary to re-
create the look, smply select a style.

Asareport is designed, new styles may aso be defined to provide a custom
look.

Why Styles

Consistency

CodeReporter makes use of styles and style sheets for a number of reasons.
Foremost is to make customizing areport asimple task. A particular look
for the report (or series of reports) need only be defined once. When
completed, through the use of styles and style shests, the process of selecting
the customized fonts need not be repeated.

In addition to making the design of the report easier, it also promotes report
consistency. Instead of having to select afont, size and color for each and
every output object within areport (and possibly making a mistake), objects
of the same importance only need the style defined once. For example, if all
total objects are to be outputted in a specia color, it isonly necessary to
select the color in a style and associate that style with the total objects.

Through the use of style sheets, common styles can be used by multiple
reports. CodeReporter can save the style information into a specia file that
can be loaded into other reports. This provides a quick way to have a
consistent ook between reports without having to recreate the styles for each
new report.

134 CodeReporter

Flexibility

The flexibility inherent in styles and style sheets only becomes apparent when
a change needs to be made to the look of areport. When afont or color
must be changed throughout a report, simply change the styles and al of the
output objects within the report are automatically updated.

Non-Windows Styles

Using other Sequiter Software products and the CodeReporter AP
(Application Programming Interface), reports designed within CodeReporter
under Windows may be outputted in other operating systems (such as DOS,
Unix, OS2, etc.). Handling the output under operating systems other than
Windows presents special problems.

CodeReporter provides a solution to this problem through the use of non-
Windows styles. See, below, for more information on outputting reportsin
other operating systems.

Creating Styles

When output objects are created, the default style is used for its output. If no
styles have been created, the CodeReporter style "Plain Text" is used asthe
default style. If other styles have been created, the last selected style is used
asthe default style for al new output objects.

Styles are created using the StyLE | CREATE menu option. Once selected,
CodeReporter prompts for the name of the new style. The new style name
must be unique for the report. That is, a style may not be created if the
report contains a previoudy created style of the same name.

Once the style name is selected, the "Font" common dialog is displayed. This
diaog, like the "File" dialog, is common to most Windows applications.

Most Windows word processors will have this dialog, or one similar, for
choosing the font information.

Choose the desired font, font size, color, etc. and click on the "OK" button.
From this point on, whenever an output object has this new style selected, the
specified font, font size, etc. will be used when the object is outputted.

When creating new styles, CodeReporter uses the currently selected style
as the basis for the new style. To create several closely related styles,
create the first one, select it, and then use it as a basis for the additional
ones.

Chapter 8: Styles 135

Font I

Font: Font style: Size:
[MS Serif [Regular [10 | ok |
S egua i T
MS SystemEx Italic 8 2l cancel I
H Plapbill Bold
Homan Bold Italic 12
Scrpt o 14
Small Fonts 18
' Symbol =l El24 E
- Effects —Sample
[T Stikeout
[Underline SOEIn
Color:
!- Black ;I Script:
!Westem _‘_r_i
This iz a screen font. The closest matching printer font will
be uzed for printing.

Figure 8.1 Font Dialog

Deleting a Style

Styles may be deleted by selecting the StyLe | DELETE menu option. If there
are styles that may be deleted, a submenu appears listing the styles. Selecting
astyle causesit to be deleted.

If an attempt is made to delete a style that is currently being used by output
objects, CodeReporter issues a warning.

Output objects using a deleted style are reverted to the first style in the style
popup menu.

CodeReporter must have at least one style defined for each report. As a
result, if there is only one style within a report, it may not be deleted.

Modifying a Style

The currently selected style may be modified by choosing the StyLE | MobiFy
menu option. Thisinvokes the "Font" common dialog so that the custom
changes may be made.

When the currently selected style is modified, all output objects using the
modified style are automatically updated.

136 CodeReporter

Changing a style to a larger font size does not change the size of the output
objects using the style. As aresult, the output objects may not display all
of the text for the object. Manually change the sizes of the output objects
to accommodate the new size.

Selecting a Style

A style may be selected by using the style popup button (See Figure 1 in the
Getting Started section of this manual for the location of this button). When
depressed, this button creates a popup list containing al of the previousdy
created styles for the report.

A style may be selected from this list with asingle or double click. Inthe
case of the single click, however, an additiona click on the style popup
button is necessary to close the style popup menu. Selecting an output object
also selects the style associated with that output object.

For an Object

If there are any output objects selected while a style is selected in this
manner, they are set to the new style. Thisisthe quickest way to set astyle
for an output object.

A style may aso be set using the " Styl€" drop down list box within the
"Object Settings' dialog. Seethe for information on the "Object Settings”
diaog.

Non-Windows Styles

Report output within Windows is handled by the various display and print
drivers available to Windows. A report outputted on alaser printer |ooks
about the same if outputted on a dot matrix printer. Whether or not a printer
supports a particular font is irrelevant, since Windows makes approximations
-- or outputs the text as graphics -- to achieve the same result. Thisis one of
the Windows advances that non-Windows applications are not able to take
advantage of .

Non-Windows styles are only necessary if a report is to be output in an
operating system other than Windows. If a report is only to be outputted in
Windows, non-Windows styles may be ignored.

Chapter 8: Styles 137

Non-Windows applications are limited to the fonts and characteristics that
are supported by the printer; since these issues are solely handled by the
printer. To confuse matters even more, different printers activate the same
characterigtic (eg. Bold letters) differently. One may require the application
send it one set of information, while another printer may need something
different.

Through the use of non-Windows style definitions, printer specific control
codes -- which cause a printer to output text in different fonts -- may be
stored in the styles of a style sheet. The advantage in thisis that different
style sheets may be created for the different printers and selectively loaded at
the time areport isrun in the other operating system. A 'Bold' stylein astyle
sheet for alaser printer would contain the bold printer control codes for the
laser, while the 'Bold' stylein adot matrix's style sheet would contain the
appropriate codes for bolding text on the dot matrix.

The CodeReporter API functions don't care what the actual codes are or
which style sheet is |oaded.

See the CodeReporter API for more information about outputting reportsin
non-Windows operating systems.

Specifying Styles

As mentioned above, there are printer specific control codes which cause the
printer to output text in a different manner -- bold, for instance.

Mogt printers use two sets of codes to control any specific function or
attribute: one set to turn "on" afunction, and another to turn it "off."

Turning "on" the bold typeface may be ESC "G+", while turning it "off" and
resetting the printer to standard mode might be ESC "G-". The actual codes
necessary for afont or characteristic is dependant upon the printer used to
output the report in the non-Windows operating system. These codes should
be listed in the documentation that comes with the printers.

The CodeReporter API functions send the style's "on" codes before the text of
each output object, and the "off" codes once the object is outputted.

The special control codes for the currently selected style may be entered using
the STyLE | NoN-WiNDows DEFINITION menu option. This invokes the "Non-
Windows Style Information" dialog.

138 CodeReporter

Hon-Windows Style Information For: Plain Text

i Pre-Text Control String Control String Format
|
i & Dec
| " Hex
Post-Text Control String
OK
Cancel

Figure 8.2 Non-Windows Style Information Dialog

The "Pre-Text Control String" edit control is used to specify the control codes
to turn "on" a specific printer font, while the "Post-Text Control String" is
used to turn the same attribute "off".

The format of the control string is determined by the "Control String Format"
radio buttons. When the "Dec" radio button is selected, the text entered in the
didog's edit controls are interpreted as decimal values -- when the "Hex"

radio button is selected, the text entered must be the equivalent hexadecimal
values. Each control code entered must be separated by a space. The
CodeReporter API does not send the space character -- it isonly used asa
delimiter between the control codes.

Multiple non-Windows Codes

Multiple attributes for non-Windows output objects, such as emphasized and
italic, must be entered within one non-Windows style definition. Simply
separate the last code of the previous control setting by a space and begin the
new control code sequence. Some printers may require a specific order when
combining codes. Refer to the printer's documentation on combining control
codes.

As mentioned above, the exact values necessary for any one typeface or
attribute (such as bold) vary from printer to printer. See, for a conversion
between ASCII, Hexadecimal, and Decimal values.

Example

Start a New Report

Create Text Objects

Chapter 8: Styles 139

The following example illustrates the steps necessary to create an itaic font
(for both a Windows and a non-Windows operating system) and how to
specify the new style for an existing output object. It isassumed that the
non-Windows printer is an Epson compatible printer.

Begin anew report by selecting the FiLe | NEw menu option. Since this
example report does not require a specific datafile, choose any data file from
the \EXAMPLES directory as the top master data file.

CodeReporter automatically creates a default "Body" group (with a header
area) and a default style ("Plain Text").

Using the OBJECT | TEXT menu option to put CodeReporter into Text Object
insertion mode, place two text output objects in the group header areawith
the following text:

Thisis NOT itdic
ThislSitalic

At this point in the report, both output objects use the default "Plain Text"
stylewhichis not italic.

Create the Windows Style

Setting an Object

Create anew italic style by selecting the StyLE | CREATE menu option. When
prompted for the style name, enter a descriptive name for theitalic style, such
as"Italic," and select the "OK" button.

CodeReporter invokes the "Font" dialog (Figure 8.1) using the currently
selected font as the basis for the new font. To set this new style asitalic,
change the "Font Styl€" list box so that the "Italic” entry is highlighted and
select the "OK" button.

Creating a new style does not alter any output objects within the report. Itis
necessary to select the desired output objects and set their new style.

Single click on the text object that contains the text "ThisISitalic" to select
it. Notice that the Styles Popup button indicates that the output object uses
the"Plain Text" style. Single click on the Styles Popup button to display the
Styleslist, and double click on the newly-created "Italic” style to select the
style for the selected output object.

Display the report (using the FILE | PRINT PREVIEW menu option) to verify
that theitalic styleis being used with the "ThisISitalic" text output object.

140 CodeReporter

Setting the Non-Windows Codes

The report just created uses the Windows display driver to output the italic
and non-italic text of the report to the screen. This example report may also
to be outputted in a non-Windows application where the Windows drivers
would not be available. It is necessary, therefore, to enter the printer-specific
control codesinto the newly created "Italic” style so that the report could be
outputted correctly in a non-Windows application.

With the"Italic” style selected, chose the STyLE | NON-WINDOWS DEFINITION
menu option to invoke the "Non-Windows Style Information™ dialog.

The Epson-compatible code to select italic printing (as listed in Epson printer
manuals) is"ESC+4". If the actual characters "ESC+4" were entered within
the "Pre-Text Control String" edit control, and the "OK" button were
selected, CodeReporter would display an error. Thisis because the only
supported formats for entering control codes are decimal and hexadecimal --
not ASCII representations of control codes.

The decimal equivalent for the escape key is 27. Thefour is represented as
52 (See Appendix D for alist of ASCII characters and their
decimal/hexadecimal equivalents). Ensure that the "Dec" radio button is
selected and enter 27 52" (without the quotation marks) within the "Pre-Text
Control String" edit control.

Since it isimportant to release the italic printing after the output object is
printed (failure to do so could cause non-italic objects to be outputted in an
italic typeface), specify the codes to turn "off" italic printing. Epson-
compatible printers use "ESC+5" to do this. Enter "27 53" within the "Post-
Text Control String” edit control and select the "OK" button to complete the
non-Windows definition of the "ltalic” style.

Chapter 9: CodeReporter Options 141

9. CodeReporter Options

This chapter deals with some of the "cosmetic" preference settings available
within CodeReporter. These settings do not affect reports or report filesin
any way, but merely alter some of the functioning and appearance of
CodeReporter.

View Options

When CodeReporter isfirst invoked, several CodeReporter options are
defaulted. Some of the most noticeable are the view options.

Button Ruler

[l CodeReporter 2.0: UNTITLED

File aAlign Edit View BEeport Relation Group Area Object Stle Help
Field | Expressiunl Total | Calculation | Textl H—Linel V-Line | Frame Nonel Print reviewl |
ﬁll|I}I|I%I|I?I|I1I|I?I|Zlﬁl|I’1’I|IqJ
[T T T T T AT T [T T T T T T A T [T T AT T A T [T T T T A T T [T I T A T T AT T O T [T T A T T T T A T [T T T AT T T T T AT T [TT T T T I T TITTIT]l
Group: Body Header Areal of 1
\
COMPHAME /
| Group: Body Footer / >
Info
Windows
Syle
Popup gatus
Button ar
I:m_l WS Senif II Body : Area 1, Height 0.846 cm.

The View menu controls the display or lack of display for the various
elements of the report design screen: button bar, ruler, status bar, and info
windows.

142 CodeReporter

When the various menu options are checked (the default), the report design
screen element is displayed. Some elements may take up needed visua room
in which the report is designed.

Selecting a checked menu option removes the report design screen element
and unchecks the menu option. Selecting an unchecked menu option adds the
report design screen element and checks the menu option.

The flexibility of adding and removing report design screen e ements alows
the report designer the flexibility of customizing his/her working environment.

Report Preferences

Some additional operational preferences can be set within the "Report
Preferences’ dialog -- such as the preferred unit of measure, the unit of
measure of the ruler (if enabled) and the report display height.

Display Units

Ruler

CodeReporter internally represents the positions and dimensions of output
objects and report areas in increments of 1/1000ths of an inch. However,
since the average report designer does not need this amount of precision when
placing output objects, CodeReporter uses customizable units of
measurement for the design interface.

The default unit of measurement for CodeReporter isinches. This may
easily be changed by using the "Report Preferences’ dialog and selecting
another radio button in the "Units" area. This unit is then used whenever
CodeReporter requires or provides a measurement. Thisincludes the
dimensions of the report and report areas, the coordinates and dimensions of
output objects, margins, etc.

CodeReporter automatically changesits display of all parts of the report to
reflect the new unit of measurement. CodeReporter doesn't actually change
the position/size of anything within the report when this setting changes, since
everything is aways internally represented in 1/000ths of an inch.

The only aspects of CodeReporter that are not affected by the "Units" setting
are the common dialogs (eg. "Font") and theruler. Since the common
dialogs may not be modified by CodeReporter, they are unaffected by the
"Units" setting.

Theruler isused asavisua aid for horizontally placing and moving output
objects. Asan example, some reports may be printed on special company
invoices that have a specific column for some figures. Instead of attempting
to place output objects by "trial and error”, aphysical ruler may be used to
measure the document and the CodeReporter ruler may be used to quickly
place the object.

Chapter 9: CodeReporter Options 143

The units of measure for the ruler are set within the "Report Preferences’
didog. Selecting the "Inches' or "Centimeters' radio buttons in the "Ruler”
section sets the units used in the ruler.

This setting may be different than the "Units" setting.

Inches Points Centimeters
1 Point 0.014 0.34
1 Centimeter 0.41 29

Table9.1 Units Conversion Table

View Page Size

CodeReporter reports may be previewed on the screen before actually being
outputted to the printer. Thisis done using the FILE | PRINT PREVIEW Menu
option.

The preview of reportsis often done simply to see the information within a
report, or to see how pages arereset. Thisisfacilitated by CodeReporter
setting the preview page size equal to the size of the display screen. In effect,
the vertical page size of the report is shrunk to the size of the display screen
so that the full-sized page header and page footer may both be seen
simultaneoudly.

The report may be previewed in the same size asiit is printed by unchecking
the "Page size equal to screen size when viewing report” check box in the
"Report Preferences’ dialog.

Unchecking this option causes the report to be displayed in the same size font
asis printed, and on the same size display page as printed. However, since
most display screens are not as large as most pages, unchecking this check
box causes vertical scroll barsto appear.

The "Page size equal to screen size when viewing report" check box has
no effect on the actual printing of a report. This setting only affects the
size of the page used when the File | Print Preview menu option is selected.

144 CodeReporter

Chapter 11: Printing 145

10. Customizing Reports

CodeReporter makes certain assumptions concerning all new reports.
Aspects such as page size, report width, margins, numeric formatting, etc. are
all set to default values when a new report is created.

However, it is not always the case that these default settings are appropriate
for the report designer, or for the report itself. All reports are not outputted
on the same size paper, nor do they use the same margins. Many reports
require that special custom changes be made in order to satisfy the report's
demands.

These and other settings may be customized once areport isinitiated by using
two dialog boxes: "Margins' and "Report Preferences’

Margins and Page Size

The"Margins' dialog, which isinvoked using the REPORT | MARGINS Mmenu
option, is used to change both the margins of the report and the width of the

page.

The margins and page size are automatically set according to the maximum
printing area available on the Windows default printer. For most dot matrix
printers, this means that the report initially is set up to cover the entire
surface of the page. Some other printers, notably laser printers, have a
hardware margin that prohibits the output of text beyond a certain point.
CodeReporter automatically detects this and, as a safety feature, does not
allow margins of areport to be less than the hardware margins for the
selected printer.

Margins

The margins of the report are determined by the various margin settings
within the "Margins' dialog. To alter the top, bottom, left or right margins,
simply change the value within their respective edit controls.

The page header area(s) and page footer area(s) are outputted between the
top and bottom margins. For example, if the top margin was set to one
inch, the upper edge of the first page header area would be outputted at
one inch.

146 CodeReporter

Margins
Top Margin p.222 Left Margin 0.250
Bottom Margin 0.222 Right Margin 0.250
Page Width |8-520 oK
Heport Width 8.020
Cancel
Units: Inches

Figure 10.1 Margins Dialog

To make it appear that portions of the page header or page footer are
outside of the top and bottom margins of a report, set the top/bottom
margins to a small value, and then increase the size of the page
header/footer areas.

Page Width

As mentioned above, the page width for new reports is determined by the
current page setting for the Windows default printer. If the ultimate
destination printer iswider or narrower than the default printer, the "Page
Width" setting may be used to change the width used by CodeReporter.

The height of a page is determined from the selected printer when the report
is outputted.

It is up to the person outputting the report to ensure that the specified
printer is properly set up within Windows -- including the correct paper
size and orientation.

Orientation

The orientation of areport (landscape or portrait) is determined by the set up
of the printer at output time. This may be either set through Windows
Control Panel, or temporarily through the FiLE | PRINTER SELECTION menu
option. See for information on setting the page orientation.

Report Preferences

The "Report Preferences’ dialog can be used to change some of the report-
wide default settings that affect the actua output of the report -- including the
default formatting of numbers and dates.

Report Preferences

Chapter 11: Printing 147

]|

Units: Buler Units: Currency S
Inches | & Inches
: _ Thousand Separator |’
" Centimeters " Centimeters
" Points Decimal Point
Default Date Format I Page size equal to
screen size when
MM{DD Y it viewing report

v Save Full Path Names [T Page Break After Title
[" Hard Reset Flag

Report Caption: 0K

Save Prefs

Cancel

Figure 10.2 Report Preferences Dialog

Numeric Format

Currency

Most of the settings that affect output objects that evaluate to numeric results
are set on an object-by-object basis through the "Object Settings' dialog.
Those settings include: the number of decimals displayed; whether the object
is a percent, a currency value or asimple number; how a zero valueis
outputted, etc.

Some settings for numeric output objects are changed on a report-by-report
basis. Theseinclude the use of the thousands separator, the currency symbol
for the report, the character used for adecimal point, etc. The "Report
Preferences’ dialog is used to modify these settings for the current report.

When numeric output objects are set to be displayed as currency values the
character(s) specified in the "Currency” edit control are outputted
immediately before the numeric contents of the object (See for formatting
output objects as currency values). The default currency symbol isthe
"dollars" ($) symbol, however, up to ten characters may be specified. Table
10.1 list some common currency symbols that are supported by the standard
Windows character set.

148 CodeReporter

Thousands

Example:

Decimal Point

Character Name Key Strokes
¢ Cent Alt+0162
£ Pound Alt+0163
¥ Yen Alt+0165
Table 10.1 Common Currency Symbols

Numeric values greater than one thousand may use a character placeholder to
format the output to the thousand, million, billion, etc. place. The normal
North American separator -- and the CodeReporter default -- is the comma.

The "Thousand Separator” edit control may be used to change this value to
any single character (including a space) or it may be deleted completely.

If athousand separator is specified, all numeric values use it asa
placeholder. If it is deleted, the numbers are outputted in raw form.

Using a thousand separator 1,000,000
Using no separator 1000000

When CodeReporter outputs fractional numbersit places the character
specified in the "Decimal Point" edit control between the whole number and
the fractional part. Any character may be entered in this edit control and
used to separate fractional numbers from whole numbers.

In North America, the period is used to divide fractional numbers from whole
numbers. In some countries, other characters such as a comma are used.

This setting has no bearing on the number of decimal places outputted for
an object. (See for setting the number of decimal places)

Date Format

Output objects that evaluate to a date value (eg. date fields, date expressions)
may be outputted in avariety of formats. New date output objects use the
setting in the "Default Date Format” drop down combo box to determine how
they are outputted initially.

A specific date format picture may be entered into the edit portion of the
combo box, or one of the pre-defined date formats may be chosen from the
drop down list.

See for more information on the date format picture.

Changing the value in the "Default Date Format" drop down combo box
does not affect the date format for any previously created date output

Chapter 11: Printing 149

objects. The "Default Date Format" setting only affects new output
objects.

Path Names

CodeReporter can use severa datafiles within a report that may be located
across severa different drives and directories. CodeReporter does this by
saving the full drive and directory path to each datafile used in the report.
While this provides flexibility in regards to the possible sources of the
information, it also requires that the data files must be where they were when
the report was created.

The "Save Full Path Names' check box within the "Report Preferences”
dialog determines whether or not the complete path to the datafilesin the
report are saved with the report.

If this check box is not checked, CodeReporter does not save the drives and
directories to the datafiles. The next time the report is retrieved,

CodeReporter is unable to access the datafilesin their origina paths (since
they were not saved) and assumes the data files are in the current directory.

Hard Reset

When a group encounters a group reset condition and it has the Reset Page
option set (see), the "Hard Reset Flag" check box is used to determine the
method of resetting the page.

If "Hard Reset Flag" is not enabled (the default), a new page is not generated
if the group with the Reset Page option was reset as aresult of a higher level
group resetting. Only if it was the group's group expression itself that caused
the group reset condition, is a new page generated. When "Hard Reset Flag"
is checked, a new page is generated regardless.

See Figure 10.3 in the CodeReporter manual for an illustration of both
settings.

Page Break After Title

The "Page Break After Title" check box determines whether or not
CodeReporter should begin the report on a new page after the title area has
been outputted. If this check box has been checked, the title areg, if used in
the report, is outputted and the report continues on a separate page.

If the check box is not checked, the title area is outputted on the same page as
the header areafor the first group.

Report Caption

The CodeReporter Print Preview window, by default, displays " CodeReporter
2.0" inthe window'stitle. Thistitle may be customized to reflect the name of

150 CodeReporter

the report or any appropriate title by changing the value of the "Report
Caption” edit control in the "Report Preferences’ dialog.

DATES.DBF Group: Page Header Report Design
1993| | Januar 12
| | | Y | Group: Year
|1993| |January | Both the Year and
YEAR Month Groups have the
| 1993 |January | Group: Month Reset Page option set.
| 1993] | February| MONTH
| 1993| | February| Group: Day
| 1994] [February] DAY
1 2 3
1993 February 1994
: Hard Reset
: Januar 10 Januar
' Flag disabled Ha i
. (default) 12 11 4
13
14
_ Month resets. No new Month resets. New Month resets. No new
page, sinceit isreset by page, since Reset Page page, since it isreset by
1 2 3
Hard Reset 1993 Januar Januar
Flag enabled Y i
12 10
13 11
14
Each time
Month or Year
isreset, a new
pageis 4 >
' 1993 February
4 Figure 10.3: Reset Page
and Hard Reset Flag

Chapter 11: Printing 151

11. Printing

The ultimate goal of any report isto have it on paper. The usual destination
of areport isaprinter. However, thisis not aways the case. In some
situations, it is desirable to output a report to the computer's screen or to a
file. This chapter discusses the procedures necessary to output a report.

Selecting a Printer

Many hardware setups have a single computer hooked up to a single printer
and all printed output from the computer goes to the one printer. Inthis
case, selecting a printer is easy -- there's only one to choose from.

Other setups, however, may have a single computer hooked up to one or more
printers locally and/or via a network. Unless CodeReporter is told otherwise,
it uses the Windows default printer for al printed output.

If the Windows default printer is acceptable, no changes need to be made.
Any other printer must explicitly be selected using the "Print Setup” common
dialog. Thisisinvoked with theFILE | PRINTER SELECTION menu option, or
the "Setup” button in the "Print" common dialog.

Print 5etup I

— Printer

[currently HP LaszerJet 4/4M on LPT1:]

Cancel

li

i Specific printer: Options...
|HP LaserJet 474M on LPT1: ' Hetwork. |
~Onentation— | [Paper
% Portrait Size: [Legal 81/2x14in 7| |
" Landscape Source: |Autu Select _'J

Figure 11.1 Print Setup Diaog

To select anon-default printer, choose the " Specific Printer” radio button and
use the drop down list box to select one of the installed printers.

This dialog is aso used for selecting landscape/portrait mode, different sizes
of paper, etc. Select the options appropriate to the report and then choose the
"OK" button.

152 CodeReporter

The settings in the Print and Print Setup dialogs are not saved with the
report, and so may need to be reset each time the report is loaded.

To the Screen

CodeReporter provides away to preview areport beforeit is outputted to a
printer. Displaying the report to the screen is a useful way of ensuring the
report is correctly laid out -- without wasting several sheets of paper.

The FILE | PRINT PREVIEW menu option creates a new window and outputs the

report, page-by-page, within it. CodeReporter creates the window maximized
(covering the entire screen), however it may be minimized or resized using the
window's maximize/minimize buttons and the sizing bar.

The NexT menu option of this window is used to move to the top of the next
page. CLosE isused to exit the report preview screen and return to the
CodeReporter design screen.

When a report is previewed, the vertical page size of the report may be
temporarily set to the size of the screen. This is optional and may be
changed to use the page size for the selected printer. See the for more
information.

To a Printer

Once areport is previewed and appears to be correct, the report may be
outputted to the selected printer using the FILE | PRINT menu option. This
invokes the "Print" common diaog.

Select the number of copies, and/or use the " Setup” button to select and
configure the desired printer. Use the "OK" button to begin printing, or
"Cancd" to return to the CodeReporter design screen without printing.

In the context of a report, which does not have set page breaks, setting a
range of pages to output doesn't make sense. The page range settings are
ignored by CodeReporter.

Setting the "Print Quality" drop down combo box to 'Draft' may cause the
printer driver to re-adjust the vertical and horizontal spacing of output
objects to the character boundary.

This can cause reports that preview as single spaced to be outputted as
double spaced. Either set the "Print Quality" to '‘High', or adjust the size of
the report's report areas so that they are 12 points high (or a multiple
thereof).

To a File

A WD P

Chapter 11: Printing 153

Print I

Printer: Default Printer [HP LazerJet 4/4M
on LPT1:]

— Print range Cancel |

f* All Setup_.. |

7] Selection

" Pages

pom: [To
Print guality: IEI]I] dpi :j Copies: D

[™ Print to file [| Collate copies

Figure 11.1 Print Dialog

A printed version of the report may be saved in afile for a number of
reasons. Either to print the report at alater time, transfer it to another
program, or smply to save the report in eectronic form.

The following steps are taken to print areport to afile.
Select the FILE | PRINT menu option to invoke the "Print" dialog.
Choose the "Print to File" check box.
Choose the "OK" button to begin printing.

When the "Print to File" dialog box appears, enter the file name (and path
if desired) under which the printed report isto be saved. Thisfile name
should be different than the name of the report file (eg. if the current
report is"INVOICE.REP" don't save the printed report under
"INVOICE.REP").

Print vs. View

A file containing a printed report holds al the information necessary to
output areport in the desired font, size, position, etc. As mentioned under ,
Windows uses printer drivers to print just about anything on any printer.

When printing to afile, Windows dumps all of the printer specific codes for
doing lines, graphics, fonts, etc. into thefile. If thefileislater copied to the
printer, the report appears exactly the same as if it had been printed directly
from the application. There are two general disadvantages to printing a report
to afile: firdt, the file can become quite large -- especialy if the report is
quite long and uses several different fonts, graphics, etc. secondly, since al of
the printer codes are stored within the file, the file is usualy illegible when
viewed within another application (such as a text editor).

154 CodeReporter

Using the Generic Printer

Asan alternative to storing al of the printer specific information within the
file, Windows has a special generic print driver which only outputs text.
Graphic elements (lines, frames, graphic objects), and fonts are not outputted.
Simply the text of the report is outputted. When this driver is used to print a
report to afile, it has the advantage of reducing the size of thefile, and
making it legible to other applications.

This generic print driver isapart of Windows, and must be installed before
CodeReporter can utilizeit. Install this driver using the Windows Control
Panel -- Printers application.

1. Select the"Add" button from the "Printers’ dialog,

2. Select the"Generic/ Text Only" printer from the "List of Printers’ list
box, and

3. Sdect the"Instal" button.

This new printer can then be selected and used to output reports rapidly to
text only printers or to ASCI| files.

When outputting a report to an ASCII file using the generic printer driver, it
is important to set the report areas to 12 points high (or a multiple thereof)
in order to have the report saved with the correct spacing.

To a Database File

An important feature of CodeReporter is the ability to output areport to a
datafile. Thismeans storing the results of the report, including totals,
calculations, fields, etc. into adatafile which may then be used asthe basis
for another report.

Thisis accomplished by specifying the output objects to be included in the
final output data file. However, since most output objects are dynamic and
have their value change from composite record to composite record, it is
necessary to aso specify when the values of the selected output objects are
written to the output datafile.

Both of these tasks are accomplished with the "Output File Template” dialog
, which isinvoked from the REPORT | OuTPUT FILE TEMPLATE menu option.
The settings made in this dialog are saved with the report, and may be
modified at any time.

Chapter 11: Printing 155

Objects
The"Objects’ list box lists al of the output objects within the report --
excluding memo fields, lines, frames, graphics and objects within the
title/summary and page header/footer areas.
When an output object is selected the "Object Info" window displays
information about the output object. Adding an output object to the output
datafile is a smple matter of selecting the object and using the "Add >>" and
"Add All >>" buttons.
Dutput File Template
Objects: Fields:
STATEMENT OF ACCOUNTS
NAME Add >> |
CITYSTZIP
g;ehdi;t: << Remove I
ADDRESS
Total Credits/Debits Add All >> |
We Owe You
You Owe Us —
CREDIT << Remove All |
ENTERDATE b Change Field Name I
Change Field Length |
Object Info: Field Info:
= B
-] 7
Record Output Group Qumpviiatd kile 0K
Customer ;]| ‘ ‘
* File Selection | Ll |

Figure 11.3 Output File Template Dialog

In cases where the output object's identification is not avalid field name
(such as the case for totals and calculations), or if afield of the same name
has aready been added to the output data file, CodeReporter prompts for a
new destination field name.

Once added, the particulars of the field may be modified using the "Change
Field Name" and "Change Field Length" buttons.

156 CodeReporter

Record Output Group

CodeReporter uses the reset expression of the "Record Output Group” to
determine when to write the contents of the field output objects into a new
record. When the specified group encounters a reset condition, a new record
is created on disk and the values of the output objects are written to this
record using the values obtained in last record of the previous group's subset
(i.e. the group footer).

The "Record Output Group" drop down list box, by default, lists the outer
most group in the report. If another group is desired, it may be selected using
this control.

Output Data File

The "Output Data File" section lists the file name of the data file in which the
report issaved. To set this name, use the "File Selection” button to invoke
the "Select a Datafile" dialog (a common File Open diaog) to specify the
drive, directory, and file name of the destination output datafile.

If the specified data file exists when the report is printed to it, CodeReporter
prompts before overwriting it.

Selecting the "OK" button saves the new data file template within the current
report.

Print to Datafile

Once adatafile template is designed, the report may be outputted to the data
file using the FiLE | PRINT TO DATAFILE menu option. When selected, this
menu option creates the data file specified in the "Output File Template"
didog and fills it with information from the report. This new data file may
then be used in the exact same manner as any other datafile.

Example

Add the Fields

This short example demonstrates the usefulness of printing a report to a data
file. Thisexample will take the PERSONEL .DBF datafile, sort it, and
transform it into the PERSONS.DBF datafile.

While CodeReporter is running, select the FiLE | NEw menu option to initiate
anew report and select the PERSONEL .DBF datafile as the top master.

Add all of PERSONEL.DBF's fields to the report by using the "Field" button
on the button bar, selecting all of the fields, and clicking within the Body
group. Sincethisreport is primarily being used as a data transformation tool,
it doesn't really matter where the fields are placed within the area.

Chapter 11: Printing 157

Create an expression object

Create the template

PERSONEL .DBF has the people's names separated into first and last name
fields (FNAME and LNAME, respectively). Suppose the PERSONS.DBF
data file needed to have the name in asingle field, in the format " Smith, John"
and "Andrews, Peter".

Using CodeReporter to do thisissimple. Merely delete the two name fields,
and add an expression output object that contains both fields. For example:

TRIM(LNAME) +*, + FNAME

If the report were previewed at this point, it would show all of the
information in the PERSONEL .DBF datafile, but with a combined name
field.

Since al the fields are now added to the report, it is time to generate the
output file template. Select the REPORT | OUTPUT FILE TEMPLATE menu option
and invoke the "Output File Template" dialog (Figure 11.3). Usethe"Add
All >>" button to add all of the output objects in the report to the new data
file.

Asthis occurs, CodeReporter indicates that the expression output object
doesn't have a field name that can be added to the new datafile. Enter
"NAME" into the "New Name" edit control and select "OK".

Select the "File Selection” button and in the resultant dial og, enter
"PEOPLES.DBF" as the name for the new datafile. All other settingsin the
"Output File Template" dialog are appropriate, so select "OK" to save the
template.

Sorting the data filelf desired, use the REPORT | SORT EXPRESSION menu
option to enter a sort expression for the report. When the report is outputted,
the records in the output datafile are written in this sorted order. An
appropriate sort expression may be LNAME+FNAME, EMPID, OF SALARY.

Generate the data file

The new PEOPLES.DBF datafileis generated by selecting the FIiLE | PRINT
To DATA FILE menu option.

Load the new PEOPLES.DBF using FiLE | NEw (saving the current file if
desired) to verify that the information was written as expected.

Chapter 12: Function Reference 159

12. Function Reference

This chapter documents the functions and techniques for using the report
module in C/C++. Visual Basic and Delphi programmers, please refer to
Appendix F.

The report module functions are used to build custom reports. With the
report module, you can easily summarize, format, display and print
information in data, index and memo files.

All of the report module functionality can be accessed indirectly via
CodeReporter. CodeReporter uses the report module to generate soft-coded
report files and their C source code. The generated source code is full of
callsto the report module functions.

In some cases, there may be a need to create an entire report by hand or
modify areport designed with CodeReporter. The application might use the
report module to load a report designed with CodeReporter, change the query
and/or sort expressions, specify where to output the report, and then finally
execute the report. Report functions are used directly in order to accomplish
these custom tasks.

The report module contains no function for creating calculations. This is because
the calculation creation function, exp4_create, is part of the CodeBase
expression evaluation module. Refer to the CodeBase expression evaluation
module and obj4calcCreate for more details.

Report Module Names

aread

group4

The functions of the report module are grouped together by functionality.
Report functions designed to effect the entire report are grouped together;
functions to create and manipulate groups are grouped together, etc. Ina
sense, the report "module’ is actually a number of modules.

Each group may contain one or more areas where output objects may be
placed. Functions that change the size of the areas, and determine their
suppression conditions begin with area4.

Each report contains a number of groups. The functions that change the way
agroup acts, and is accessed, begin with group4.

160 CodeReporter

obj4

report4

styled

total4

The functions used to create, free, and modify output objects begin with
obj4.

These are the main report functions. They are used when something applies
to the entire report. These function initialize the report, load and save
relations and styles, change the page size, change the report's default settings,
etc. Thereport specific functions begin with report4.

Every output object can be assigned an output characteristic such as typeface
and color. These characteritics, called styles, need only be defined oncein a
report, and not for every output object that uses them. The style4 functions
create and modify the styles for areport.

The definitions upon which total output objects are based are created and
freed are set using these functions. Creation of the actual total output object
is not done with these functions, but rather with the obj4 functions.

The following sections document all of the above "report modules’.

An application can only load one report at a time. If an application is to use more
than one report, report4free must be called between each report.

Saving As Code

When CodeReporter saves reports to disk with the FILE | SAVE menu option,
it does so in soft-coded report files with the extension of ".REP". Thisis
adequate for most uses, including end-user applications, since these report
files may be loaded while the application is running. This provides the
developer the flexibility of modifying areport layout without having to re-
compile the application that uses the report.

In some instances, it may be desirable to save the report directly as source
code. This is done using the FILE | SAVE As CobE menu option. This
invokes the " Specify Report File for Save" dialog which prompts for the file
name and source code language for the code.

CodeReporter generates language specific source code for the currently
loaded report and saves it in the specified file. The source code file
contains two functions, which may be called in an application to load the
report and/or relation. These two functions must be prototyped in the
application prior to their use but may be renamed in the generated source
file (and prototype) as desired.

Chapter 12: Function Reference 161

buildRelate

Usage: RELATE4 *buildRelate(CODE4 *cb, int openFiles)

Description: This function creates and/or populates a RELATE4 structure for the relation
of the saved report. This structure may be used with the CodeBase 5
relation module, or with the report module function report4init.

This function is automatically called by buildReport.
Parameters:

cb Thisisapointer to the application's CODE4 structure. Thisis used for
memory management and error handling.

openFiles This parameter determines whether buildRelate should automatically
open the data files referenced within the report file. If openFilesisatrue
value (non-zero) the data files for the report are opened if they are not
already open. If openFilesis afase value (zero) the datafiles are
assumed to be open.

Returns; Thisfunction returns avalid pointer to a RELATE4 structure if
successful. NULL isreturned if the data files for the relation could not be
found.

buildReport

Usage: REPORT4 *buildReport(CODE4 *cb, int openFiles)

Description: This function builds the report and returns a pointer to the popul ated
report structure. buildReport automatically calls buildRelate to build the
relation behind the report.

Parameters:

cb Thisisapointer to the application's CODE4 structure. Thisis used for
memory management and error handling.

openFiles This parameter determines whether buildRelate should automatically
open the data files referenced within the report file. If openFilesisatrue
value (non-zero) the data files for the report are opened if they are not
already open. If openFilesisafase value (zero) the datafiles are
assumed to be open.

Returns; Thisfunction returns avalid pointer to a REPORT4 structure if
successful. NULL isreturned if the datafiles for the relation could not be
found, or if there wasn't enough memory to build the report.

162 CodeReporter

Using Report Functions

The report functions provide a method of designing complex reportsin and
out of the Windows environment. Hand-writing all the code necessary to
create areport, in most cases, isalot of work. As asolution, CodeReporter
has two options that are useful to the application developer: saving areport
as a soft-coded report file (.REP extension) and saving the report as C source
code. When areport is saved with CodeReporter, it is placed within a soft-
coded report file (.REP) that can be directly loaded into an application. With
afew function calls, areport can be loaded and quickly executed. In the
majority of cases, thisis sufficient.

In the cases where these report files are inappropriate, the report can be saved
as C source code by CodeReporter. This code can be used without having
the time consuming burden of hand-coding every function needed to creste the
report.

There are very few cases where a soft-coded report file, or CodeReporter-
generated source code will not meet the reporting needs. The CodeReporter
report module functions are provided so that a report can be modified or built
from scratch to meet the application's reporting demands.

Using a Report File

PROGRAM

The most common, and flexible, case of implementing areport in an
application is by loading a soft-coded report file and executing the report.

Rep1.c Using a CodeReporter report file.

#include "d4dl.h"

#ifdef __ TURBOC
extern unsigned _stklen = 10000 ;

#Hendif

void main(int argc, char *argv[])

{
CODE4 cb;

REPORT4 *report ;

if(argc<2)
return ;

codedinit(&cb) ;

report = reportdretrieve(&cb, argv[1], 1, NULL) ;

if(report)

}

}

Chapter 12: Function Reference 163

report4do(report) ;
reportafree(report, 1, 1) ;

codedinitUndo(&cb) ;
return ;

Function report4retrieve loads the specified report file from disk, creates
an internal REPORT4 structure, and returns a pointer to the structure. This
pointer is then used to execute the report with function report4do.

The code in REPL.C isageneric way of displaying any report file, sihce a
report file name is specified on the command line. Thefile nameisal that is
needed to load areport from disk. The entire report, including the names of
the datafiles, is stored in the soft-coded report file. All that is necessary to
display the report isto call function report4do. Theinternal functions take
care of the rest.

If this same application were to be written for Windows, the following code
might be used.

PROGRAM

wreP1.c Using a CodeReporter report file under Windows.

#include <windows.h>
#include "d4al.h"
#include "r4report.n"

#define IDM_DOREPORT 101
static char *reportName ;
long FAR PASCAL WndProc (HWND, UINT, WPARAM, LPARAM) ;

int PASCAL WinMain (HINSTANCE hinstance, HINSTANCE hPrevinstance,

{

LPSTR IpszCmdParam, int nCmdShow)

static char szAppName[] = "WREP1" ;
HWND hwnd ;

MSG msg ;

WNDCLASS wndclass;
reportName = |pszCmdParam ;

if ('hPrevinstance)

{
wndclass.style = CS_ HREDRAW | CS VREDRAW ;
wndclass.|pfnWndProc = WndProc ;
wndclass.cbClsExtra =0;
wndclass.coWndExtra =0;
wndclass.hinstance = hinstance ;

164 CodeReporter

wndclass.hlcon = Loadlcon (NULL, IDI_APPLICATION) ;
wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
wndclass.hbrBackground = GetStockObject (WHITE_BRUSH) ;
wndclass.lpszMenuName ="MAINMENU" ;
wndclass.|pszClassName = szAppName ;

RegisterClass (&wndclass) ;
}

hwnd = CreateWindow (szAppName, "Application Window",WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,
CW_USEDEFAULT, NULL, NULL, hinstance, NULL) ;

ShowWindow (hwnd, nCmdShow) ;
UpdateWindow (hwnd) ;
while (GetMessage (&msg, NULL, 0, 0))
{
TransateM essage (& msg) ;
DispatchMessage (& Ms) ;
}

return msg.wParam ;

}

long FAR PASCAL WndProc (HWND hwnd, UINT message, WPARAM wParam
, LPARAM [Param)
{
static CODE4 cb ;
static REPORT4 *report ;

switch (message)
{
case WM_COMMAND:
switch(wParam)
{
case IDM_DOREPORT:
report = reportdretrieve(& cb, reportName, 1, NULL) ;
if(report)
{
reportdparent(report, hWnd) ;
report4toScreen(report, 1) ;
report4do(report) ;
}
break ;
}
break ;
case WM_CREATE:
codedinit(&cb) ;
break ;

Chapter 12: Function Reference 165

case CRM_REPORTCLOSED: /* Sent by report4do, see API */
report4free(report, 1, 1) ;
break ;

case WM_DESTROY:
codedinitUndo(&cb) ;
PostQuitMessage (0) ;
return O ;

}

return DefWindowProc (hWnd, message, wParam, |Param) ;
}

PROGRAM
WREP1.RC Windows resource file for the menu.

MAINMENU MENU

BEGIN
MENUITEM "&Display Report", 101
END
PROGRAM
WREP1.DEF Windows definition file.

DESCRIPTION '"WREP1 CodeReporter Example'

EXETYPE WINDOWS

STUB ‘WINSTUB.EXE'

CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD FIXED MULTIPLE
HEAPSIZE 4096

STACKSIZE 15000

Using Generated Code

CodeReporter can generate source code for any report file. The hard-coded
source code to these reportsis stored in individua files which may be
compiled and linked with any application needing the report. All that is
necessary, from the application’'s side, is a prototype of the function which
createsthe REPORT4 structure, and acall to that function. Once created,
the 'do’ and 'free’ sequenceis carried out exactly asif the report was loaded
using function report4retrieve.

166 CodeReporter

PROGRAM
RepP2.c Using source code generated by CodeReporter.

#include "d4dl.h"

#ifdef _ TURBOC__
extern unsigned _stklen = 10000 ;
#endif

* Prototype the CodeReporter-generated function */
REPORT4 *buildReport(CODE4 *, int) ;
void main(void)
{
CODE4 cb;
REPORT4 *report ;

codedinit(&cb) ;
report = buildReport(&cb, 1) ;

if(report)
{

report4do(report) ;
report4free(report, 1, 1) ;

}
codedinitUndo(&cb) ;

return ;

}

REP2.C uses areport file saved as source code. As documented above, the
buildReport function, generated by CodeReporter, is used to build the
report. The code for the buildReport function must be linked with REP2.C
to produce the final executable.

The prototype of function buildReport should be placed above main. This
prototype is used to properly instruct the compiler on the parameters and
return value for the CodeReporter-generated function. The prototype of the
CodeReporter-generated report function follows this pattern:

REPORT4 *buildReport(CODE4 *cb, int openFiles);

The generated source code may aso be used in a Windows application in the
exact same manner. WREP2.C illustrates this point. By simply replacing
thereportdretrieve line with the function name in the generated source code
report file, the report may be loaded and outputted.

Chapter 12: Function Reference 167

PROGRAM
wreP2.c Partial code for using generated code under Windows.

long FAR PASCAL WndProc (HWND hWnd, UINT message, WPARAM wParam,
LPARAM [Param)
{

static CODE4 cb ;
static REPORT4 *report ;

switch (message)
{
case WM_COMMAND:
switch(wParam)
{
case IDM_DOREPORT:
report = buildReport(&cb, 1) ;
if(report)
{
reportdparent(report, hWnd) ;
report4toScreen(report, 1) ;

report4do(report) ;
}
break ;
}
break ;

Creating a Report from Scratch

Since CodeReporter generates source code for any report, it is not
recommended that reports be created from scratch. If customization of a
report is necessary, it may be done using a previously generated report's code
as a basis for the new custom report.

The following steps may be taken if it is necessary to create areport
manually.

1. Createthereation first. This may either be done using the
CodeBase 5 relation module functions, or arelation may be loaded from a
relation file with relatedretrieve.

2. Initialize the report structure by calling report4init. This sets up
some internal memory and sets many default settings.

3. Set up the applicable query and/or sort conditions using report4querySet
and report4sortSet.

168 CodeReporter

. Modify any of the default settings with the following functions:

report4caption, reportdcurrency, reportddecimal,
reportdhardResets, reportdmargins, reportdpagesSize,
report4separator, and report4titlePage.

. Create the groups of the report with group4create. Since the page

header/footer and title/summary areas are automatically created by
report4init, it is unnecessary to create them.

. Create the areas for the groups using area4create.

. Create any report-wide calculations (if applicable) using the

CodeBase 5 function expr4calc_create.

. Create and place the output objects in the appropriate areas using

their respective creation functions.

Once the report has been constructed in this manner, the normal report
sequence of 'load', 'do’, and 'free’ may be used to output the report.

Custom Output Drivers

The CodeReporter APl comes with two different drivers for different
platforms: Microsoft Windows and MS-DOS. If the report functions are to
be usad in other platforms, or if a custom display library (such as
CodeScreens) is to be used, it is necessary for the devel oper to create higher
own equivaent to the report4do function.

The main functions used in a custom output driver are:

reportdpagelnit
report4generatePage
report4pageObjFirst
report4pageObjNext

report4pageFree

In order to properly use these functions, the following structures must be used
to properly output the data for a report.

Chapter 12: Function Reference 169

OBJECT4
Description: This structure is used to describe an evaluated output object. A
pointer to this structure is returned by the report4pageObj
functions.
Members:

objtype Thisflag isused to indicate the type of the current output object.

alignment

w
h

Info_len
info

style index
See dso:

objtype may have any one of the following constant values:

objdtype field info stores text representing the
contents of afield.

obj4type expr info stores text representing the
contents of an expression.

obj4type total info stores text representing the
value of atotal.

obj4type text info stores static text.

obj4type_hline info isblank. The horizontal
lineis described by x, y, w, and h.

objdtype vline info isblank. The vertica line
is described by x, y, w, and h.

obj4type frame info contains two bytes which
are used to determine the state
of thefill and rounded corners.
If the left byteis'l', the frameis
filled. If theright byteis'l',
the frame has rounded corners.

Output objects that evaluate to text (obj4type field, objdtype _expr,
obj4type_text, obj4type total) are justified aong the left, right, or
center of the object. The possible values for alignment are:

justifydright Right justification.
justify4left Left justification.
justifydcenter Centered.

This is the horizontal position of the upper left corner of the output
object in thousandths of an inch.

This is the vertical position from the top of the page of the upper
left corner of the output object in thousandths of an inch.

This is the width of the output object in thousandths of an inch.

This is the height of the output object in thousandths of an inch.
This is the size of the information stored in info for the output object.
Thisisthe information to be outputted for the object.

Thisis an index into the report's style sheet.

reportdpageObjFirst, reportdpageObjNext, styledindex

170 CodeReporter

STYLE4

Description: This structure contains the information necessary to describe the
font, color, and attributes of the report's styles.

A pointer to the appropriate style structure may be obtained by
styledlookup and styledindex.

Members;

name Thisisanull terminated character array containing the name of the
style as set in CodeReporter.

Ifont Thisisa pointer to a Windows LOGFONT structure which describes
the typeface of the font used by the style.

color Thisisan unsigned long value that stores the RGB colors set for the
style. One byte for the red value, one byte for the green, and one
byte for the blue. Each byte can contain a value from O to 255
indicating the shade of color. Use the following macros to retrieve
the individua settings: RAGETRVALUE(rgb)
RAGETGVALUE(rgb) RAGETRVALUE(rgb)

point_size Thisisthe sizein points of the font used in the style
codes before len Thisisthe length of the codes pointed to by codes_before.
codes after_len Thisisthe length of the codes pointed to by codes_after.

codes before Thisisacharacter array containing the printer control codes
stored in the style sheet that turn 'on’ a printer's attribute.

codes _after Thisisacharacter array containing the printer control codes
stored in the style sheet that turn 'off' a printer's attribute.

Seedso: styledindex, styledcreate

Using the Custom Driver Shell

The basic structure of areport output driver is essentialy the same no matter
for which environment or interface library the driver isintended.

Chapter 12: Function Reference 171

PROGRAM
DRSHELLC Listed below is the source code and in code documentation for a sample
custom interface driver shell.

int SAFUNCTION report4doDriverShell REPORT4 *report)
{

int rc, error ;

OBJECT4 *obj ;

STYLE4 *style ;

if(report4dpagelnit(report) < 0) /* initialize the page structure */
return -1 ;

error=0;
while((rc = report4generatePage(report)) >= 0) /* fill the page */

if(rc == 2) /* the last page has been reached */
break ;
for(obj = report4pageObjFirst(report); obj != NULL && !error
; obj = reportdpageObjNext(report))
{

/* cycle through all the evaluated output objects within the * report */
switch(obj->objtype)
{

case obj4dtype_field:

case objdtype_expr:

case obj4type_total:

case obj4dtype_text:

/* textual output routine */

if((style = styledindex(report, obj->style_index)) == NULL)

obj = NULL ;
error=1;
break ;

}

/* get information about the object's style
* use style->color, style->Ifont, and style->point_size
* to construct the appropriate output font */

if(report->output_handle == 1)
/* outputting to screen */

/* position to coordinates obj->x, obj->y

* and use a screen interface function to output the

* text pointed to by obj->info to a length of

* obj->info_len, using obj->w and obj->h if

* necessary to handle word wrap and obj->alignment */

}

else
{
/* outputting to a printer */
/* position to coordinates obj->x, obj->y
* and use a printer interface function to output the

172 CodeReporter

/* draw the appropriate rectangle

* from obj->X, obj->y to

* Obj'>X+0bj->W, obj_>y+obj_>h */
}

else

/* print the appropriate rectangle
* from obj->x, obj->y to
* obj->x+obj->w, obj->y+obj->h */
}
break ;
default:
/* ignore all other object types */

}

/* clear output device for new page */

reportdpageFree(report) ;

if(report->code_base->error_code < 0 || error)
return -1 ;

return O ;

Chapter 12: Function Reference 173

Asit can be seen, the custom driver cycles through all of the evaluated output
objects outputting them individually, for each page of the report

This code assumes that the output device may be written to at any point
within the page. If output to adevice isdone on aline by line basis (such as
with a dot-matrix printer), it may be necessary to perform custom storage of

the output objects.

This may be done by creating a buffer in memory the size of the output
device and storing the output objects within it as they are retrieved. When
report4pageObjNext indicates that there are no more objects on the page,
this buffered copy of the page could be outputted.

Another option that may be possible is to cycle through the objectsin the
page, creating alinked list of objects sorted by vertical and horizontal
position. When there are no more objects within the page, this sorted list may
be used to output the elements on aline by line basis.

It can be seen from these few examples that creating a custom report using
the CodeReporter API can be as simple or as complex as desired. 1n amost
every situation a combination of soft-coded reports and/or CodeReporter-
generated source code can create complex reports with a minimum of hand

coding.

174 CodeReporter

aread

areadcreate

Functions

The area4 functions are used for creating report output areas wherein output
objects may be placed. These functions are also used to iterate through the
output objects placed within areport area

Usage:
Description:

Parameters:

group
height

isHeader

suppresseExpr

Returns:

See Also:

AREAA4 * areadcreate(GROUP4 *group, long height, short isHeader, char
* suppressexpr)

This function creates a report header or footer areafor the specified group in
which output objects may be placed.

Thisis apointer to the group with which the new report area is associated.

This (long) value is the height of the new report area in thousandths of an
inch.

Thislogical flag determinesif the new report area should be associated with
the group's header or footer. If isHeader is non-zero (true) the new areaiis
associated with the group's header. If isHeader is zero (false) the new area
is associated with the group's footer.

Thisisanull terminated character array which points to alogical dBASE
expression used to determine whether or not the report areaisto be
suppressed when a group reset condition occurs. When a group reset
condition occurs, suppressExpr isevaluated. If it evaluatesto a. TRUE.
value, the report areais not outputted for that group reset condition. If it
evaluatesto a .FALSE. value, the report areais outputted. If suppressExpr is
NULL or pointsto an array of blank spaces, the newly created areais never
suppressed.

areadcreate creates a copy of the suppressExpr parameter. Asaresult,
the memory for suppressExpr may be freed once this function is called.

areadcreate returns an AREA4 pointer if successful. If the area could
not be created, areadcreate returnsa NULL value.

areadfree, group4create, group4titteSummary

aread Function Reference 175

areadfree
Usage: void areadfree(AREA4 *area)

Description: This function removes a specified report area from the report. In addition,
all memory associated with the report areais freed and all output objects
within the report area are removed and freed.

Parameters:
area This AREA4 pointer identifies the report areato free

See Also: areadcreate, group4free

areadnumObjects
Usage: int areadnumODbjects(AREA4 *area)

Description: This function returns the current number of output objects placed within the
specified area

Parameters:
group This AREA4 pointer is used to identify the area
Returns:
0 There are no output objects for the specified area.
Not Zero The number of output objects placed within the specified area.

See Also: areadobjFirst, areadobjNext, areadobjLast, aread4objPrev

areadobjFirst
Usage: OBM *areadobjFirst(AREA4 *area)

Description: This function retrieves a pointer to the first output object placed in the
specified area. Thisfunction is used in conjunction with area4objNext to
iterate through the output objects within an area.

Parameters:
area Thisisapointer to the area containing output objects.
Returns:

Not Zero An OBJ4 pointer for the first output object placed in the report areais
returned.

0 Error. areawasinvalid, or there are no output objects in the specified area.

See Also: areadobjNext, areadobjLast

176 CodeReporter

areadobjLast

Usage:
Description:

Parameters:
area
Returns:
Not Zero

See Also:

OBM *areadobjLast(AREA4 *area)

This function retrieves a pointer to the last output object placed in the
specified area. Thisfunction is used in conjunction with area4objPrev to
iterate backwards through the output objects within an area.

Thisis a pointer to the area containing output objects.

An OBJ4 pointer for the last output object placed in the report areais
returned.

Error. area wasinvalid, or there are no output objects in the specified area.

areadobjPrev, area4objFirst

areadobjNext

Usage:
Description:

Parameters:
area
Returns:
Not Zero

See Also:

OBM *areadobjNext(AREA4 *area)

This function retrieves a pointer to the next output within the specified area.
This function is used in conjunction with area4objFirst to iterate through
the output objects placed within the specified area.

Thisis apointer to the area containing output objects.

An OBJ4 pointer for the next output object placed in the report areais
returned.

Error. area wasinvalid, or the last output object retrieved was the last
output object in the area.

areadobjFirst, areadobjPrev

aread Function Reference 177

areadobjPrev

Usage: OBM *areadobjPrev(AREA4 *area)

Description: Thisfunction retrieves a pointer to the previous output within the specified
area. Thisfunction isused in conjunction with area4objLast to iterate
backwards through the output objects placed within the specified area.

Parameters:
area Thisisapointer to the area containing output objects.
Returns:

Not Zero An OBJ4 pointer for the previous output object placed in the report areais
returned.

0 Error. areawasinvalid, or the last output object retrieved was the first
output object in the area.

See Also: areadobjlLast, areadobjNext

area4pageBreak

Usage: void areadpageBreak(AREA4 *areg, int allowBreaks)

Description: Thisfunction is used to alow or disallow page breaks within the specified
area. If thisfunction isnot called, areas will not allow page breaks to occur
within them.

Parameters:
area This AREA4 pointer is used to identify the area.

allowBreaks If allowBreaksis zero (false), a page break is not allowed to occur within
the area. If apage break would occur within the group, it is then outputted
on the next page. If allowBreaksis a positive non-zero value (true), a page
break may occur within the report area. If a page break would occur within
the report area, much as possible of the area is outputted on the current
page, and the remainder is outputted on the following page.

Returns:
>= 0 Thisfunction returns the previous alow page break setting.

<0 areaor alowBreaksisinvalid.

178 CodeReporter

group4 Functions

The group4 functions are used to define the actions performed within a
subset of the composite datafile. These actions are mostly involved with
outputting the report areas. These functions are also used to specify specid
characteristics of the output, including swapping the header/footer area(s)
with those of the page, resetting the page and page number, etc.group4
functions are also used to iterate through the header and footer areas
associated with the group.

group4create

Usage:
Description:

Parameters:
report

name

resetExpr

Returns:
0

Not Zero
See Also:

GROUPA4 * group4create(REPORT4 *report, char * name, char *resetExpr)

group4create creates a new group in the specified report. By default, the
new group is the outermost group of the report.

Thisis a pointer to the report in which the new group is added.

Thisis anull-terminated character array containing a unique descriptive
name for the group. If this parameter is NULL, the name of the group
defaults to "Group n", where n is the position of the group created.
group4create creates a copy of name.

Thisisanull-terminated character array containing a dBASE expression
used to determine when the group resets. The report module evaluates this
expression for each record in the composite datafile, and if its value
changes the group resets and outputs the areas for the group.

If resetExpr is NULL, the group resets for every record in the composite
datafile.

An error has occurred in creating the group.
A pointer to the successfully created group is returned.

areadcreate, group4free

group4 Function Reference 179

group4footerFirst
Usage: AREAA4 *group4footerFirst(GROUPA *group)

Description: This function returns an AREA4 pointer to the first footer area created for
the group.

Parameters:
group ThisisaGROUP4 pointer for the group.

Returns: group4footerFirst returns an AREA4 pointer for the first footer area created
for the group. If the group does not have a footer area, this function returns
NULL.

See Also: group4headerfirst, group4footerNext, group4footerprev

group4footerNext
Usage: AREAA4 *group4footerNext(GROUP4 *group, AREA4 *area)

Description: This function returns a pointer to the footer area created in the specified
group after the specified footer area. This function is generally used in
combination with group4footerFirst to step through the footer areas of a

group.

Parameters:
group Thisisa pointer to the group containing the area area.

area Thisisapointer to the footer area used to locate the next footer area
created.

Returns; This function returns an AREA4 pointer to the footer area created after the
area footer area. If area isthe last footer area created for the group, or if
areaisNULL, group4footerNext returns NULL.

Unexpected results can occur if the area parameter is not a valid footer area for
the group group.

See Also: group4footerFirst, group4numFooters

180 CodeReporter

group4footerPrev

Usage:
Description:

Parameters:

group
area

Returns:

See Also:

group4free

AREAA4 *group4footerPrev(GROUP4 *group, AREA4 *area)

This function returns a pointer to the footer area for the specified group
created immediately before the specified area. This function is generdly

used in combination with areadlastFooter to step through the footer areas of
agroup.

Thisis a pointer to the group containing the area footer area.

Thisis apointer to the footer area used to locate the previoudy created
footer area.

This function returns an AREA4 pointer to the footer area created before the
areafooter area. If area isthe last footer area created for the group, or if
areaisNULL, group4footerPrev returns NULL.

Unexpected results can occur if the area parameter is not a valid footer area for
the group group.

areadfirstFooter, area4dnumFooters

Usage:
Description:

Parameters:

group
See Also:

void group4free(GROUP4 *group)

This function removes the specified group from the report and frees any
associated memory. |f the group has header and/or footer aress, they are
removed by callsto area4free.

Thisisthe pointer of the group to remove from the report.

group4create, areadfree

group4headerFirst

Usage:
Description:

Parameters:

group
Returns:

See Also:

AREAA4 *group4headerFirst(GROUP4 *group)

This function returns an AREA4 pointer to the first header area created for
the group.

Thisisa GROUP4 pointer for the group.

group4headerFirst returns an AREA4 pointer for the first header area
created for the group. If the group does not have a header area, this function
returns NULL.

group4headerFirst, group4headerPrev, group4headerNext

group4 Function Reference 181

group4headerNext

Usage: AREAA4 *groupdheaderNext(GROUP4 *group, AREA4 *area)

Description: This function returns a pointer to the header area created in the specified
group after the specified header area.

Thisfunction is generally used in combination with group4headerFirst to
step through the header areas of a group.

Parameters:
group Thisisa pointer to the group containing the area area.

area Thisisapointer to the header area used to locate the next header area
created.

Returns; Thisfunction returns an AREA4 pointer to the header area created after the
area header area. If areaisthe header last area created for the group, or
if areaisNULL, group4footerNext returns NULL.

Unexpected results can occur if the area parameter is not a valid header area for
the group group.

See Also: group4headerFirst, group4numHeaders

group4headerPrev
Usage: AREAA4 *groupdheaderPrev(GROUPA *group, AREA4 *area)

Description: This function returns a pointer to the header area for the specified group
created immediately before the specified area. This function is generdly
used in combination with areadlastHeader to step through the header areas
of agroup.

Parameters:
group Thisisapointer to the group containing the area header area

area Thisisapointer to the header area used to locate the previously created
header area.

Returns; This function returns an AREA4 pointer to the header area created before the
area header area. If areaisthe last header area created for the group, or
if areaisNULL, areadprevFooter returns NULL.

Unexpected results can occur if the area parameter is not a valid footer area for
the group group.

See Also: areadfirstHeader, area4numHeaders

182 CodeReporter

group4numkFooters

Usage: int group4numFooters(GROUP4 *group)
Description: This function returns the current number of footer areas for the specified
group.
Parameters:
group This GROUP4 pointer is used to identify the group.
Returns:
0 There are no footers for the specified group.
Not Zero The number of footer areas created for the specified group.

See Also: areadcreate, areadfree

group4numHeaders

Usage: int groupdnumHeaders(GROUP4 *group)
Description: This function returns the current number of header areas for the specified
group.
Parameters:
group This GROUP4 pointer is used to identify the group.
Returns:
0 There are no headers for the specified group.
Not Zero The number of header areas created for the specified group.

See Also: areadcreate, areadfree

group4 Function Reference 183

group4repeatHeader

Usage: int groupdrepeatHeader(GROUP4 * group, int repeatHeader)

Description: Thisfunction is used to determine whether or not the specified group's
header area(s) should be displayed at the top of a new page if inner groups
span a page break.

This function does not affect the page header. If thisfunctionis

called with repeatHeader set to '1', the header is displayed under the page
header (and any other higher positioned repeated headers) and before the
first header line of alower positioned group.

Parameters:
group Thisisthe group for which the repeat header option is set.

repeatHeader If repeatHeader is'1', the header is repeated on the next page. If it
contains a'0' value (the default), the header areais only outputted when it
encounters a reset condition.

||f this function is not called, the header is not repeated.

Returns:
>=0 The previousrepeatHeader setting is returned.
<0 Error.

See Also: group4swapHeader

group4resetExprSet

Usage: int group4resetExprSet(GROUP4 *group, char * resetExpr)
Description: This function changes the specified group's reset expression.
Parameters:

group Thisisthe group for which the reset expression is set.

resetExpr Thisisanull terminated character array containing the new dBASE
expression used to determine when the areas of the group are outputted. If
resetExpr is NULL, the group reset expression is removed and the group
resets for every composite record.

Returns:
0 The group reset expression was successfully set.
<0 Error.

See Also: group4create

184 CodeReporter

group4resetPage

Usage:
Description:

Parameters:
group
resetPage

1

Returns:
>=0

<0

See Also:

int group4resetPage(GROUPA4 * group, int resetPage)

This function is used to determine whether a page break should be forced
before the specified group's header area is outputted.

Thisisthe group for which the reset page option is set.
This parameter may have two settings:

When resetPage is set to one, a page break is forced each time the specified
group encounters a reset condition.

When resetPage is set to zero, the default, no special measures are taken to
ensure that the group header is displayed on a new page.

||f this function is not called, the page is not reset when the group resets.

The previous resetPage setting is returned.
Error.

group4resetPageNum

group4resetPageNum

Usage:
Description:

Parameters:
group
resetPageNum
1

Returns:
>=0

<0

See Also:

int group4resetPageNum(GROUPA4 *group, int resetPageNum)

This function is used to determine whether a page break should be forced
before the specified group's header areais outputted. If the page break
option is set, the page number isalso reset to '1'.

Thisisthe group for which the reset page numberoption is set.
This parameter may have two settings:

When resetPageNum is set to one, a page break is forced each time the
specified group encounters areset condition. In addition, the page number
issetto'l'.

When resetPage is set to zero, the default, no special measures are taken to
ensure that the group header is displayed on a new page, and the page
number continues to accumulate.

The previous resetPage setting is returned.
Error.
PAGENO() dBASE Expression, group4resetPage

group4 Function Reference 185

group4swapFooter

Usage:
Description:

Parameters:

group

swap

int group4swapFooter(GROUP4 *group, int swap)

This function is used to cause a group to swap its footer area with the page
footer area when the group resets. When the group encounters a reset
condition, the rest of the current page is skipped and the specified group's
footer area(s) are outputted instead of, and in the place of, the normal page
footer. The page footer is not outputted. If the group is not reset and a page
break occurs, the normal page footer is used.

This pointer specifies the group whose footer area(s) are used in place of the
page footer area.

Thislogical flag determines whether or not the group should swap its footer
area. The possible values for swap are:

1 The footer of the group is swapped.

Returns:
>=0
<0

See Also:

The footer of the group is not swapped. If this function is not called, this
value is assumed.

The previous swap value is returned.
Error.

group4swapHeader, reportdpageHeaderFooter

group4swapHeader

Usage:
Description:

Parameters:

group

swap

int group4swapHeader(GROUPA4 *group, int swap)

This function is used to cause a group to swap its header area with the page
header area when the group resets. When the group encounters a reset
condition, the rest of the current page is skipped (the footers of all inner
groups are outputted on the current page) and the specified group's footer
area(s) are outputted at the top of the next page in the place of, and instead
of, the normal page header. The page header is not Outputted. If the group
is not reset and a page break occurs, the normal page header is used.

This pointer specifies the group whose header area(s) are used in place of the
page header area.

Thislogical flag determines whether or not the group should swap its header
area. The possible valuesfor swap are:

1 The header of the group is swapped.

The header of the group is not swapped. If thisfunction is not called, this
valueis assumed.

186 CodeReporter

Returns:
>=0 The previous swap valueis returned.
<0 Error.

See Also: group4swapFooter, report4pageHeaderFooter

obj4 Function Reference 187

obj4 Functions

The obj4 functions are used for creating and modifying the output objects
within areport area. Objects are created with their type's creation function
and removed from the report with a their type's free function or obj4delete.

In addition, once an object is created, specia formatting functions and style
functions may be called to alter the way in which the output object appears.

A
obj4bitmapStaticCreate !

Usage: OBMM *obj4bitmapStaticCreate(AREA4 *area, HANDLE hDIB
, long x, long y, long width, long height)

Description: This function creates a graphic object using a handle to a Windows device-
independent bitmap. Once obj4bitmapStaticCreate creates a graphic output
object, the handle to the device-independent bitmap (hDIB) must not be
freed by the programmer. The bitmap is automatically freed by
obj4bitmapStaticFree. The bitmap is scaled to fit within the coordinates
provided. The aspect ratio of the bitmap is not necessarily maintained. The
image of the static graphic object is stored within the report file.

Parameters:

area This AREA4 pointer specifies the report area in which the new graphic
output object is placed.

hDIB Thisisahandle to a Windows device-independent bitmap.

X Thisisthe horizontal coordinate, in 1000ths of an inch, where the left side of
the graphic object is placed.

y Thisisthe vertica coordinate, in 1000ths of an inch (starting from the top of
the report area), where the top edge of the graphic object is placed.

width Thisisthe horizontal width of the graphic output object, in 1000ths of an
inch.

height Thisisthe vertical height of the graphic output object, in 1000ths of an inch.
Returns:

Not Zero A pointer to the new graphic output object is returned if its creation was
successful.

0 Error. The graphic output object could not be created.
See Also: obj4dbitmapStaticFree, obj4bitmapFileCreate

188 CodeReporter

i

obj4bitmapStaticFree

Usage:
Description:

Parameters:
obj
See Also:

void obj4bitmapStaticFree(OBJ4 *obyj)

This function removes a static graphic output object (created with
obj4bitmapStaticCreate) from the report and frees any memory associated
with the bitmap and the output object.

Thisis a pointer to the static graphic output object to be freed.
obj4delete, objdbitmapStaticCreate, reportdfree

H

obj4bitmapFileCreate

Usage:

Description:

Parameters:

area

fileName

y
width

height
Returns:
Not Zero

See Also:

OBX * obj4bitmapFileCreate(AREA4 *areg, char *fileName, long x, long y,
long width, long height)

This function creates a static graphic output object by opening the provided
Windows bitmap file (BMP) and creating an internal copy of the image.
The bitmap file is closed once the graphic output object is created. The
bitmap is scaled to fit within the coordinates provided. The aspect ratio of
the bitmap is not necessarily maintained. When areport containing this type
of dtatic graphic object is saved, only areference to the file name is saved.
The actual image for the bitmap is re-loaded from the provided bitmap file
each time the report is executed.

This AREA4 pointer specifies the report area in which the new graphic
output object is placed.

Thisisanull terminated character array containing the drive, directory and
file name of a Windows bitmap. If adrive and/or directory is not provided,
the current drive/directory is assumed.

Thisisthe horizontal coordinate, in 1000ths of an inch, where the left side of
the graphic object is placed.

Thisisthe vertical coordinate, in 1000ths of an inch (starting from the top of
the report area), where the top edge of the graphic object is placed.

Thisisthe horizontal width of the graphic output object, in 1000ths of an
inch.

Thisisthe vertical height of the graphic output object, in 1000ths of an inch.

A pointer to the new graphic output object is returned if its creation was
successful.

Error. The graphic output object could not be created.
objdbitmapFileFree, obj4dbitmapStaticCreate

obj4 Function Reference 189

i

obj4bitmapFileFree

Usage: void obj4bitmapFileFree(OBJ4 *obj)

Description: This function removes a static graphic output object (created with
obj4bitmapFileCreate) from the report and frees any memory associated
with the bitmap and the output object.

Parameters:

obj Thisisthe pointer returned by obj4bitmapFileCreate for the graphic object
to remove from the report.

See Also: objdbitmapFileCreate, obj4delete, report4free

A
obj4bitmapFieldCreate &

Usage: OBM *obj4bitmapFiel dCreate(AREA4 *area, FIELDA4 *field, long X,
long y, long width, long height)

Description: This function creates a dynamic graphic output object by opening the
Windows bitmap file (BMP) described in the data file field and creating an
internal copy of theimage. The bitmap fileis closed once the graphic output
object is outputted. The bitmap is scaled to fit within the coordinates
provided. The aspect ratio of the bitmap is not necessarily maintained.
When areport containing this type of static graphic object is saved, only a
referenceto thefield is saved. The actual image for the bitmap is re-loaded
from the bitmap file specified in the current field's value each time the
graphic output object is outputted.

Parameters:

area This AREA4 pointer specifies the report areain which the new graphic
output object is placed.

field ThisisaFIELD4 pointer to adatafile field containing the drive, directory,
and file name of a Windows bitmap file (BMP). If the field does not
contain adrive and/or directory, the current drive/directory is assumed.

X Thisisthe horizontal coordinate, in 1000ths of an inch, where the left side of
the graphic object is placed.

y Thisisthe vertica coordinate, in 1000ths of an inch (starting from the top of
the report area), where the top edge of the graphic object is placed.

width Thisisthe horizontal width of the graphic output object, in 1000ths of an
inch.

height Thisisthe vertical height of the graphic output object, in 1000ths of an inch.

190 CodeReporter

Returns:

Not Zero A pointer to the new graphic output object is returned if its creation was
successful.

0 Error. The graphic output object could not be created.
See Also: obj4bitmapFieldFree, obj4delete

i

obj4bitmapFieldFree

Usage: void obj4bitmapFieldFree(OBJ4 *obj)

Description: This function removes a static graphic output object (created with
obj4bitmapFileCreate) from the report and frees any memory associated
with the bitmap and the output object.

Parameters:

obj Thisisthe pointer returned by obj4bitmapFieldCreate for the graphic
object to remove from the report.

See Also: objdbitmapFieldCreate, obj4delete, report4free

obj4brackets

Usage: int obj4brackets(OBJ4 *obyj, int useBrackets)

Description: This function specifies whether or not the specified numeric output
object should use brackets for negative values.

Parameters:

obj Thisisapointer to the numeric object for which brackets are to be
used.

useBrackets This parameter determines whether brackets are used for negative
values. useBrackets may be one of the following values

1 Negative numbers are outputted within brackets. (i.e. (123))
0 Negative numbers use the negative sign. (i.e. -123)
Returns:
>=0 The previous useBrackets setting is returned.
<0 Error. obj or useBrackets were invalid.

See Also: obj4numericType, obj4displayZero

obj4 Function Reference 191

obj4dataFieldSet

Usage: int obj4dataFieldSet(OBM *obj, char *destField, char type, int length, int
decimals)

Description: This function is used when outputting a report to a data file to associate a
report object with afield in the destination data file. This setting is used
only if report4output or report4toScreen are used to output the report to a
datafile.

Parameters:
obj Thisisapointer to the output object to be directed to a datafile.

destField Thisisanull terminated character array containing the name of the datafile
field in which the objects contents are placed.

type Thisisan uppercase character used to describe the type of datafile field
within which the contents of the output object are placed. type may be one
of the following: 'C' (character), 'D' (date), ‘L' (logical), 'N' (numeric).

length Thisisthe maximum number of characters of the output object's contents to
be copied into the output datafile.

decimas Thisisthe number characters out of length to reserve as decimal places.
decimasisonly used if typeis'N', otherwise it isignored.

Returns:
0 The output object was successfully associated with the destination field.
<0 Error. obj or destField were invalid.
See Also: reportddataFileSet, reportd4dataGroup, d4create from CodeBase 5.

obj4calcCreate

Usage: OBM *obj4calcCreate(AREA4 *area, EXPRACALC *calc, long x, long y,
long width, long height)

Description: This function creates a calculation output object using a calculation created
with the CodeBase 6 expr4calcCreate function.

Parameters:

area This AREA4 pointer specifies the report area in which the new graphic
output object is placed.

cac Thisisapointer to acalculation created with expr4calcCreate.

X Thisisthe horizontal coordinate, in 1000ths of an inch, where the left side of
the calculation object is placed.

y Thisisthe vertica coordinate, in 1000ths of an inch (starting from the top of
the report area), where the top edge of the calculation object is placed.

192 CodeReporter

width

height

Returns:
Not Zero

See Also:

Thisisthe horizontal width of the calculation output object, in 1000ths of an
inch.

Thisisthe vertica height of the calculation output object, in 1000ths of an
inch.

A pointer to the new calculation output object is returned if its creation was
successful.

Error. The calculation output object could not be created.

expr4calc_create, obj4calcFree, objddelete

obj4calcFree

Usage:
Description:

Parameters:

obj

See Also:

void obj4calcFree(OBJ *obj)

This function removes the calculation output object from the report and frees
any memory associated with the output object.

obj4calcFree does not free the memory associated with the actual calculation,
nor does it remove the calculation. Use CodeBase 5 function expr4calc_reset
or report4free to remove the calculation.

This is a pointer to the calculation object to be removed from the
report.

obj4calcCreate, obj4delete, report4free, CodeBase 5 function
exprdcalc_reset

obj4dateFormat

Usage:
Description:

Parameters:
obj
dateFormat

int obj4dateFormat(OBJ4 *obyj, char *dateFormat)

This function sets the format (also known as a picture or mask) with which
the date output object uses during output. If the output object does not
evauate to a date value, this function has no effect. If this function is not
called and the output object evaluates to a date vaue, the default date format
for the report is used (see report4dateFormat)

Thisis apointer to the output object for which the date format is set.

This null terminated character array contains the new date format used for
the output object. If dateFormat is NULL, the current date format is

Returns:
0

<0

See Also:

obj4 Function Reference 193

ignored, and the report's default date format is used. obj4dateFormat makes
acopy of dateFormat.

The date format for the output object was successfully set.
Error.

report4dateFormat

obj4decimals

Usage:
Description:

Parameters:
obj
numDecimals
Returns:

0

<0

See Also:

obj4delete

int obj4decimals(OBJ4 *obyj, int numDecimals)

This function sets the number of decimals used in the output of numeric
output objects. Any unused decimal places are filled with zeros. If the
output object does not evaluate to a numeric value, this function has no
effect. All numeric output objects, with the exception of output objects
created with obj4fieldCreate, have no decimals set by default. Numeric
field output objects, by default, use the number of decimals specified by the
field.

This pointer specifies the object for which the decimals are set.
Thisis the number of decimals used in the output object.

Success.
Error. obj isinvalid.

reportddecimal

Usage:
Description:

Parameters:
obj
See Also:

void obj4delete(OB *obyj)

Thisis ageneric function to delete any type of output object.
obj4delete determines the type of the obj output object and calls the
appropriate "free" function.

Thisis a pointer to the object to remove from the report.

reportdfree

obj4displayOnce

Usage:
Description:

int obj4displayOnce(OBJ4 *obj, char * supprExpr)

This function causes the specified output object only to be outputted
when the value of the provided expression changes.

194 CodeReporter

Parameters:
obj Thisisapointer to the object for which the display once option is set.

supprExpr Thisisanull terminated character array containing a dBASE
expression which is used to determine when the output object is
outputted. When the group the object is in is reset, this expression is
evaluated. If the expressions value has changed since the last time it
was evaluated, the output object is outputted. If the value is the same,
the output object is ignored.

Returns:
0 Success.

<0 Error. objis invalid.

obj4displayZero

Usage: int obj4displayZero(OBJ4 *obyj, int displayZero)

Description: This function specifies whether or not to output a zero value for a numeric
output object. If the specified output object does not evaluate to a numeric
value, this function has no effect.

Parameters:
obj Thisisapointer to the output object for which the display zero option is set.
displayZero This trueffalse flag may have two values:

1 When displayZero is one (true), zero values are outputted. If thisfunction is
not called, this value is assumed.

0 If displayZero is zero (false), zero values are not outputted for the specified
output object.

Returns:
0 Success.
<0 Error. obj wasinvalid.

See Also: objdbrackets, obj4numericType

obj4 Function Reference 195

obj4exprCreate

Usage: OBM *objdexprCreate(AREA4 *area, EXPR4 *expr, long X, long y, long
width, long height)

Description: This function creates an expression output object using an expression
created with the CodeBase 6 function expr4parse.

Parameters:

area This AREA4 pointer specifies the report area in which the new expression
output object is placed.

expr Thisisan EXPR4 pointer to a parsed expression.

X Thisisthe horizontal coordinate, in 1000ths of an inch, where the left side of
the expression object is placed.

y Thisisthe vertical coordinate, in 1000ths of an inch (from the top of the
report ared), where the top edge of the expression object is placed.

width Thisisthe horizontal width of the expression output object, in 1000ths of an
inch.

height Thisisthe vertical height of the expression output
object, in 1000ths of an inch.

Returns:

Not Zero A pointer to the new expression output object is returned if its creation was
successful.

0 Error. The expression output object could not be created.
See Also: CodeBase function exprédparse, objdexprFree

objdexprFree

Usage: void objdexprFree(OBJ *obj)

Description: This function removes the specified expression output object from the report
and frees any memory associated with the object. This function
automatically frees the expression upon which the expression output object
is based by calling CodeBase 6 function expr4free.

Parameters:

obj Thisisapointer to the expression output object to be removed from the
report.

See Also: CodeBase 6 function exprafree, objdexprCreate, objddelete

196 CodeReporter

obj4fieldCreate

Usage:

Description:

Parameters:

area

field

y

width
height
Returns:
Not Zero

0
See Also:

OBM *obj4fieldCreate(AREA4 *area, FIELDA4 *field, long x, long y, long
width, long height)

This function creates a field output object for the specified data file
field. Field output objects are automatically trimmed, so they may be
centered, left justified, or right justified.

This AREA4 pointer specifies the report area in which the new field output
object is placed.

ThisisaFIELD4 pointer to a data file field. This may be obtained by using
CodeBase 5 function d4field.

Thisis the horizontal coordinate, in 1000ths of an inch, where the left side of
the field object is placed.

Thisisthe vertical coordinate, in 1000ths of an inch (starting from the top of
the report ared), where the top edge of the field object is placed.

Thisisthe horizontal width of the field output object, in 1000ths of an inch.
Thisisthe vertical height of the field output object, in 1000ths of an inch.

A pointer to the new field output object is returned if its creation was
successful.

Error. Thefield output object could not be created.
obj4fieldFree, obj4delete, CodeBase 5 function d4field

obj4fieldFree

Usage:
Description:

Parameters:

obj

See Also:

void obj4fieldFree(OBJ4 *obj)

This function removes afield output object from the report and frees any
memory associated with it. This function does not affect the datafile field
referenced by the output object.

Thisis apointer to the field output object (created with obj4fieldCreate) to
remove from the report.

obj4fieldCreate, obj4delete, report4free

obj4frameCorners

Usage:

int obj4frameCorners(OBJM *obyj, int rounded)

obj4 Function Reference 197

Description: Thisfunction is used with frame output objects to determine what type of
corners (rounded or square) should be used when the object is outputted.

Parameters:
obj Thisisapointer to the frame output object for which the corner type is set.

rounded This parameter determines whether or not the corners of the frame object are
rounded. rounded may have one of the two values below:

1 Theframe object is created with rounded corners.

0 Theframe object is created with square (90 degree) corners. If this function
isnot called, this vaue is assumed.

Returns:
>=0 The previous rounded setting is returned.
<0 Error. obj isinvalid.

See Also: objaframeCreate, obj4frameFree

obj4frameCreate

Usage: OBM *obj4frameCreate(AREA4 *areg, long X, long y, long width, long
height)

Description: This function creates a frame output object within the specified report area.
By default, the new frame has square corners and is hollow.

Parameters:

area This AREA4 pointer specifies the report area in which the new field output
object is placed.

X Thisisthe horizontal coordinate, in 1000ths of an inch, where the left side of
the frame object is placed.

y Thisisthe vertica coordinate, in 1000ths of an inch (starting from the top of
the report area), where the top edge of the frame object is placed.

width Thisisthe horizontal width of the frame output object, in 1000ths of an inch.
height Thisisthe vertical height of the frame output object, in 1000ths of an inch.
Returns:

Not Zero A pointer to the new frame output object is returned if its creation was
successful.

0 Error. Theframe output object could not be created.
See Also: objaframeCorners, obj4frameFill, obj4frameFree, obj4lineWidth

198 CodeReporter

obj4frameFill

Usage:
Description:

Parameters:
obj
fill

1

0
Returns:
0

<0

See Also:

int obj4frameFill(OBJ4 *obj, int fill)

This function is used to set the fill status for the specified frame output
object. If the frameisfilled, the report module output functions fill the
frame with the color of the frame's selected style. If the frameis not filled
(the default), only the frame outline is outputted.

Thisis a pointer to the frame output object for which the fill statusis set.

This parameter determines whether or not the frame is filled when outputted.
fill may have the following values:

If fill is set to one (true), the frame output object isfilled.
If fill is set to zero (false), the frame output object is not filled.

The previous value of fill is returned.
Error. obj or fill were invalid.

obj4frameCreate, obj4frameCorners, obj4lineWidth

obj4frameFree

Usage:
Description:

Parameters:
obj
See Also:

obj4justify

void obj4frameFree(OB *obj)

This function removes a frame object from the report and frees any memory
associated with the output object.

Thisis apointer to the frame output object to be freed.

obj4frameCreate, obj4delete, report4free

Usage:
Description:

Parameters:
obj
justification

int obj4justify(OBJ4 *obj, int justification)

This function specifies whether objects that contain textual output
should be centered, left justified, or right justified within the bounds of
the object. All objects are left justified by default.

This specifies the object which isto be justified.

The justification parameter may be one of the following pre-defined constants:

justify4left

justify4right

justify4center
Returns:
>=0

<0

See Also:

obj4 Function Reference 199

Text for the output object is outputted beginning at the leftmost bounds of the
object.

Text for the output object is outputted beginning at the rightmost bounds of the
object with the last character of the object and proceeds to towards the I eft.

Text for the output object is centered within the bounds of the object.

The previous justification setting is returned.
Error.

objdexprCreate, obj4fieldCreate, obj4totalCreate, obj4textCreate

obj4leadingZero

Usage:
Description:

Parameters:

obj

leadingZero

Returns:
>=0

<0

See Also:

int obj4leadingZero(OBJ4 *obyj, int leadingZero)

Thisfunction is used to set the leading zero option for the specified output
object. The leading zero option is used when the output object evaluatesto a
numeric value between 1 and -1 to determine whether or not a zero should be
placed in the units position of the fractional number.

Leading Zero No Leading Zero

0.33 .33
-0.33 -.33
3.33 3

Thisis a pointer to the numeric output for which the leading zero option is
set

This parameter determines whether or not aleading zero is used for the
numeric output object. leadingZero may have the following values:

A leading zero is used for fractional numbers.

A leading zero is not used for fractional numbers. If thisfunction is not
cdled, thisvaueis assumed.

The previous value of leadingZero is returned.
Error. obj and/or leadingZero were invaid.

obj4displayZero

200 CodeReporter

obj4lineCreate

Usage:

Description:

Parameters:
area
vertical

y

length
Returns:
Not Zero

0
See Also:

OBM *obj4lineCreate(AREA4 *areg, int vertical, long x, long y,
long length)

This function is used to create vertical and horizontal line output objects of a
specified length. The line output object has default thickness of one
thousandth of an inch (1/2000th inch).

Thisis a pointer to the area in which the line output object is placed.

This parameter determines whether the line output object is vertical or
horizontal. vertical may have one of the following values.

The line output object isavertical line.
The line output object is a horizontal line.

Thisisthe horizontal coordinate, in 1000ths of an inch, of the beginning
point of the line.

Thisisthe vertical coordinate, in 1000ths of an inch (starting from the top of
the report area), that specifies where the line output object begins.

Thisisthe length of the line object in 1000ths of an inch.

A pointer to the new line output object isreturned if its creation was
successful.

Error. The line output object could not be created.
objdlineFree, obj4lineWidth

obj4lineFree

Usage:
Description:

Parameters:
obj
See Also:

void obj4lineFree(OBJM *obj)

This function removes a line output object from the report and frees any
memory associated with the output object.

Thisis apointer to the line object to be removed from the report.

obj4lineCreate, obj4delete, reportdfree

obj4 Function Reference 201

obj4lineWidth

Usage: int obj4lineFree(OBJ *obj, long width)

Description: This function changes the width of the lines used to draw line and frame
output objects.

Parameters:

obj Thisisapointer to the line output object for which the length is set.
width Thisisthe new width, in thousandths of an inch, of the line object.
Returns:
0 The width was successfully set.
-1 Error. obj wasinvalid or width was a negative number.
See Also: obj4lineCreate
obj4lookAhead
Usage: int obj4lookAhead(OBJ4 *obyj, int lookAhead)

Description: This function sets the specified output object as alook ahead object. When
the object is outputted, it contains the value it would have in the group's
footer.

A look ahead total output object contains the value it would have when its total
reset expression changes and not necessarily the value it would have in the
group's footer.

Parameters:

obj Thisisapointer to the output object for which the look ahead option isto be
Set.
lookAhead This parameter determines whether or not an output object is alook ahead

object. lookAhead may be one of the following values:

1 The specified object is set to be alook ahead abject.

Returns:
>=0
<0

The object is not set to be alook ahead object. If thisfunction is not called,
this value is assumed.

The previous lookAhead value is returned.

Error. obj or lookAhead wereinvalid.

202 CodeReporter

obj4numericType

Usage:
Description:

Parameters:
obj

numericType

obj4numNumber

obj4numExponent
obj4numCurrency
obj4numPercent

Returns:
>=0

<0

See Also:

obj4style

int obj4numericType(OBJ *obyj, int numericType)

This function determines how the specified numeric output object isto be
formatted.

Thisis a pointer to an output object that evaluates to a numeric value,

This parameter is used to set the formatting of the numeric output object.
numericType may be any one of the following defined constants:

The output object is not formatted in any way.

The output object isformatted in scientific notation (ie. n.nnnnn e xx where
n isthe numeric value and x is the exponentia value)

The currency symbol (set with reportdcurrency) is outputted before the
numeric value.

When outputted, the percentage symbol (‘%) immediately follows the
numeric value (multiplied by 100).

The previous setting of numericType is returned.
Error. obj or numericType was invalid.

reportdcurrency, reportddecimal, obj4decimals

Usage:
Description:

Parameters:
obj

style
Returns:

0

<0

See Also:

int objdstyle(OBJ4 *obj, STYLE4 *style)

By default, al output objects are created with the currently selected style. If
a style has not been selected, the report module default style "Plain Text" is
used. Thisfunction sets a specific style for the output object.

Thisis apointer to the output object for which the styleis set
Thisis apointer to the style used for the output object.

Success.
Error.

style4create, styledlookup, stylednext

obj4 Function Reference 203

obj4textCreate

Usage:

Description:
Parameters:

area

text

y

width
height
Returns:
Not Zero

See Also:

OBM *obj4textCreate(AREA4 *area, char *text, long X, long y, long width,
long height)

This function creates a static text object.

This AREA4 pointer specifies the report area in which the new text output
object is placed.

Thisisanull terminated character array containing the text to be outputted.
objatextCreate makes a copy of text.

Thisisthe horizontal coordinate, in 1000ths of an inch, where the left side of
the text object is placed.

Thisisthe vertica coordinate, in 1000ths of an inch (starting from the top of
the report area), where the top edge of the text object is placed.

Thisisthe horizontal width of the text output object, in 1000ths of an inch.
Thisisthe vertica height of the text output object, in 1000ths of an inch.

A pointer to the new text output object is returned if its creation was
successful.

Error. Thetext output object could not be created.
obj4textFree, objddelete

obj4textFree

Usage:
Description:

Parameters:
obj
See Also:

void obj4textFree(OBJ4 *obj)

This function removes the specified static text output object from the report
and frees any memory associated with the output object.

Thisis apointer to the static text object to be removed from the report
obj4textCreate, obj4delete, reportdfree

204 CodeReporter

obj4totalCreate

Usage:
Description:

Parameters:

area

total

y

width
height
Returns:
Not Zero

0
See Also:

OB3 *obj4total Create(AREA4 *area, TOTALA4 *total, long x, long y, long
width, long height)

This function creates atotal output object using atotal created with
total4create.

This AREA4 pointer specifies the report area in which the new total output
object is placed.

Thisisa TOTALA4 pointer to a total created with total4create.

Thisisthe horizontal coordinate, in 1000ths of an inch, where the left side of
the total object is placed.

Thisisthe vertical coordinate, in 1000ths of an inch (starting from the top of
the report area), where the top edge of the total object is placed.

Thisisthe horizontal width of the total output object, in 1000ths of an inch.
Thisisthe vertica height of the total output object, in 1000ths of an inch.

A pointer to the new total output object is returned if its creation was
successful.

Error. Thetotal output object could not be created.

obj4totalFree, total4create, total4free, obj4dlookAhead

obj4totalFree

Usage:
Description:

Parameters:
obj
See Also:

void obj4total Free(OBJ4 *obyj)

This function removes the specified total output object from the report and
frees any memory associated with the object. In addition, any other output
object or expression that uses the total is also removed from the report.
Finally, the total upon which the object is based is aso freed.

This function can cause a chain-reaction of object deletions that can quickly
destroy a report.

Thisisthe total output object to be removed from the report.

obj4totalCreate, total4create, total4free, obj4delete, reportdfree

related Function Reference 205

relate4 Functions

The two relate4 functions listed herein provide the ability to save and retrieve
arelation from disk. These functions are not CodeReporter-specific and may
be used in any CodeBase 5 application to retrieve and save relations.

relatedretrieve

Usage:

Description:

Parameters:
cb

fileName

openFiles

dataPathName

RELATEA4 *relatedretrieve(CODE4 *cb, char *fileName, int openFiles,
char *dataPathName)

This function retrieves arelation file and constructs the relation that was
saved with relate4save. In the process of loading the relation file,
relatedretrieve may also open the relation's datafiles.

Thisis a pointer to the application's CODE4 structure. Thisis used for
memory management and error handling.

Thisisanull terminated character array which contains the file name
(including drive and directory) of therelation file. A file extension need not
be provided since the .REL extension is aways used.

If openFilesisatrue value (non-zero), relatedretrieve attempts to open the
data, index, and memo files referenced in the saved relation file if they are
not already opened. If relatedretrieve cannot find a certain datafile
referenced in the relation file, that file and al lower level dave datafiles of
that file are omitted from the relation and an attempt is made to locate the
next datafile.

If openFilesisafase vaue (zero), relatedretrieve assumesthat al of the
data, index, and memo files are aready opened. If adatafile referenced in the
relation file is not opened, that file and all lower level dave datafilesin the
relation are omitted from the relation and the relate4retrieve continues to
build the relation.

This parameter is anull terminated character array containing a new drive
and path for the data, index, and memo files stored in the relation file. If
dataPathName is NULL, the paths stored in the relation file are used. If no
paths were stored in thefile, relatedretrieve attempts to open the filesin the
current directory. If dataPathName is specified, it is used to override the
paths saved within the relation file.

206 CodeReporter

Returns:
Not Zero

Zero

See Also:

relate4save

The relation was successfully retrieved from the specified relation file.

An error occurred while reading the relation file or opening the relation's top
master datafile. Seethe CODE4.error_code member variable for the
specific error setting.

relatedsave, relatedinit, relatedfree

Usage:
Description:
Parameters:

relate
fileName

savePathNames

Returns:
0

r4no_create

<0
See Also:

int relatedsave(RELATEA4 *relate, char *fileName, int savePathNames)

This function saves the specified relation in arelation file.

Thisis apointer to the relation that isto be saved to arelation file.

Thisisanull terminated character array which contains the file name
(including drive and directory) of therelation file. A file extension need not
be provided since the .REL extension is aways used.

If this parameter contains a true value (non-zero), related4save saves the full
path name of the files used in the relation. If savePathNames contains a
false vaue (zero), only the actual file nameis saved.

The relation file was successfully saved.

Therelation file could not be created. Thisis generally caused when
fileName conflicts with afile that already exists, or if the application does
not have read/write privilegesto the desired drive.

Error.

relatedretrieve

reportd Function Reference 207

reportd Functions

reportdcaption

Thereport4 functions provide a means of specifying report-wide settings,

such as page width, margins, currency symbol, whether output goesto the
screen, the selected printer, etc.

H

Usage:
Description:

Parameters:

report

caption

Returns:
0
<0

int report4caption(REPORTA4 *report, char *caption)

This function sets the text of the caption for the report output window when
the report is sent to the screen.

Thisisapointer to the report for which the report output window caption is
Set.

Thisisanull terminated character array containing the text to be placed in

the caption portion of the output window. report4caption makes a copy of
caption.

The caption was set successfully.
Error.

report4currency

Usage:
Description:

Parameters:
report

currency

Returns:
0

<0

See Also:

int report4currency(REPORTA4 *report, char * currency)

This function sets the text to be displayed immediately to the left of numeric
output objects that are formatted as currency values.

Thisis a pointer to the report for which the currency characters are set.

Thisisanull terminated character array containing the currency symbol(s).
currency may contain up to ten (10) characters. report4currency makesa

copy of currency. If thisfunction is not called, the dollar symbol ($) is
assumed.

The currency character(s) were set successfully.
Error.

objdnumericType

208 CodeReporter

report4dataDo

Usage: int reportddataDo(REPORT4 *report)

Description: This function outputs the report to a data file as specified in the report's data
file template, or with functions obj4dataFieldSet, report4dataFileSet, and
report4dataGroup.

Parameters:
report This is a pointer to the report to be outputted to a data file.
Returns:
0 Success.

<0 Error. report wasinvalid, or did not contain a datafile template.

See Also: obj4dataFieldSet, report4dataFileSet, report4dataGroup

reportd4dataFileSet

Usage: int report4dataFileSet(REPORT4 *report, char *destFile)

Description: This function sets the file name used to create the output data file when
report output is directed to a datafile by report4dataDo.

Parameters:
report Thisisapointer to the report for which the data file name is set.

destFile Thisisanull terminated character array containing the drive, directory and
file name of the data file where report output is stored. If the drive and/or
directory is not provided, the current directory is assumed.

Returns:
0 Success.
<0 Error. report or destFile wereinvdid.
See Also: obj4dataFieldSet, report4dataGroup

reportd Function Reference 209

reportd4dataGroup

Usage:
Description:

Parameters:

report

group

Returns:
0

<0

See Also:

int report4dataGroup(REPORT4 *report, GROUP4 *group)

This function identifies the group whose reset condition generates a new
record in the output datafile. The output objects are stored in the resultant
record containing the values they would have if they were outputted in the
group's group footer area.

Thisis a pointer to the report with which the group and datafileis
associated.

Thisisa GROUPA4 pointer for the group which generates records in the
output datafile.

Success.
Error. report or group wereinvaid.

reportdgroupLookup, obj4dataFieldSet, report4dataFileSet

report4dateFormat

Usage:
Description:

Parameters:
report

format

Returns:
0

<0

See Also:

int report4dateFormat(REPORT4 *report, char *format)

This function sets the default date format for the specified report. All new
output objects that evaluate to a date value, by default, use this format for
output. When the report isinitially created, the value of the
CODE4.date_format member variable is stored within the report's default
date format.

Thisis a pointer to the report for which the date format is set.

Thisisanull terminated character array which contains the default date
format. This string should contain the picture formatting characters ('D', '‘M’,
'C','Y"). reportddateFormat creates a copy of format, so format may point
to temporary memory.

Success.
Error. invalid report, or not enough memory to copy format.
obj4dateFor mat

210 CodeReporter

report4decimal

Usage:
Description:

Parameters:
report
decima Char

Returns:
0

<0

See Also:

report4do

int report4decimal (REPORTA4 *report, char decimalChar)

This function sets the character to be outputted to separate whole numbers
from fractional numbers within a numeric output object.

Thisis apointer to the report for which the decimal character is used.

Thisis the character used as the decimal. If thisfunction is not called, the
decimal point ('.") is assumed.

Success.
Error. report was invalid.

obj4decimals

Usage:
Description:

Parameters:
Returns:
0

rdterminate

<0
See Also:

int report4do(REPORT4 *report)

This high-level function causes the specified report to be outputted to the
selected device.

When outputting the report under Windows, report4do disables the report's
parent window (specified by report4parent) and creates an output window
that processes the report. The output window sends the report's parent
window a CRM_REPORTCLOSED message once the report is completed.

If this function is to be used, it is necessary to first call report4parent. Failure to
do so can cause unpredictable results.

If the report is outputted in a non-Windows application, report4do sends the
report to the device specified by report4output and returns once the report is
compl eted.

report specifies the report to be outputted.

Success. The report was successfully outputted. Under Windows, this value
is returned immediately, even though the output window may not have
completed the output of the report.

A relation was unable to be made and the error action specified with
relatederror_action was relate4terminate.

Error.

report4toScreen, report4parent, reportdprinterSelect, reportdprinterSet,
report4output

reportdfree

reportd Function Reference 211

Usage:
Description:

Parameters:
report
freeRelate

closeFiles

void report4free(REPORTA4 *report, int freeRelate, int closeFiles)

This function frees all memory associated with the report, including all
output objects, al groups, and all aress.

In a Windows application, this function should only be called after the report's
parent window has received a CRM_REPORTCLOSED message. Calling
report4free immediately after report4do under Windows, can cause
unpredictable results.

Thisisthe report to be freed from memory.

If this parameter contains a true value (non-zero), the memory associated
with the report's relation is automatically freed. If afalse value (zero) is
passed, the relation is unaffected.

This parameter, when it contains a true value (non-zero), causes report4free
to automatically close the data, index, and memo files referenced in the report.
If closeFilesisfase (zero), or if freeRelate isfalse, this setting isignored.

See Also: reportdpageFree, and relate4dfree in the CodeBase 5 manua
i
EE?EE
reportdgeneratePage
Usage: int reportdgeneratePage(REPORTA4 *report, HDC hDC)

Description: Thislow-level function is used to store the next page of the report in a
Windows device context such as a bitmap device context or a printer device
context. This function does not clear the device context prior to storing the
page. If thisfunction is used to output the report to a printer, it isthe
programmer’s responsibility to send the following codes to the device with
the Windows Escape function: SETABORTPROC (if desired),
STARTDOC, NEWFRAME, ENDDOC. If thisfunction is used to output
the report to a bitmap (to display in awindow, saveto disk, etc.), itisthe
programmer’'s responsibility to create a memory device context containing a
bitmap large enough to store a report page.

Parameters:

report Thisisapointer to the report from which a page is retrieved.
hDC Thisisahandleto avalid Microsoft Windows device context in which the
next page of the report is placed. It isthe programmer's responsibility to free
hDC onceit is no longer needed.
Returns:
0 The new page was successfully stored in hDC.
2 There are no more pages in thereport. hDC is unaltered.
<0 Error. report and/or hDC wereinvalid.
See Also: reportdinit

212 CodeReporter

i

reportdgeneratePage

Usage: int reportdgeneratePage(REPORT4 *report)

Description: Thislow-level function is used to generate an internal structure containing
the information for the next page of areport. The values of the evaluated
output objects within the report page may be retrieved from this internal
buffer using report4pageObijFirst and report4pageObjNext.

Parameters:
report Thisisapointer to the report for which the next page is retrieved.
Returns:
0 The new page was successfully stored in the internal buffer.
2 There are no more pages in the report.
<0 Error. report wasinvalid.

See Also: reportdpageObjFirst, report4pageObjNext, reportdinit

reportdgroupFirst

Usage: GROUPA4 *reportdgroupFirst(REPORT4 *report)

Description: report4groupFirst returns a pointer to the innermost group, which isthe first
group created in the report. This function, in conjunction with
report4groupNext isused to iterate through the groups within a report.

Parameters:
report Thisisapointer to the report from which the first group is retrieved.
Returns:
0 The specified report does not have a group created.
Not Zero Thisisapointer to the innermost group of the report.

See Also: reportdgroupNext, reportdnumGroups

reportd Function Reference 213

reportd4groupLast

Usage:
Description:

Parameters:
report
Returns:

0

Not Zero
See Also:

GROUPA4 *reportdgrouplL ast(REPORT4 *report)

reportdgroupLast returns a pointer to the outermost group, which isthe last
group created in the report. This function, in conjunction with
report4groupPrev isused to iterate through the groups within a report.

Thisis apointer to the report from which the last group isretrieved.
The specified report does not have a group created.

Thisis a pointer to the outermost group of the report.

report4groupPrev, report4dnumGroups

reportdgroupLookup

Usage:
Description:
Parameters:

report

name

Returns:
Not Zero
0

See Also:

GROUPA4 *report4groupL ookup(REPORT4 *report, char *name)
This function is used to obtain a GROUP4 pointer to specified named group.

Thisis apointer to the report for which the groups belong.

Thisisanull terminated character array which contains the name of the
group for which a GROUP4 pointer is desired.

A pointer to the specified group is returned.
name did not match with any named groups in the specified report.

group4create

214 CodeReporter

reportdgroupNext

Usage:
Description:

Parameters:
report
group

Returns:
0

Not Zero
See Also:

GROUPA4 *reportdgroupNext(REPORT4 *report, GROUP4 *group)

This function is used to obtain a GROUP4 pointer to the group created
immediately after the specified group. Thisisused in conjunction with
groupd4first to iterate through the groups in a report.

Thisis apointer to the report for which the groups belong.

Thisisapointer to an inner group which is used to obtain the next outer
group.

There were no more groups in the report. group is the outermost group.
A pointer to the next group is returned.

group4first, reportdnumGroups

report4groupPrev

Usage:
Description:

Parameters:
report
group

Returns:
0

Not Zero
See Also:

GROUPA4 *report4groupPrev(REPORT4 *report, GROUP4 *group)

This function is used to obtain a GROUP4 pointer to the group created
immediately before the specified group. Thisisused in conjunction with
reportdgroupLast to iterate through the groups in a report.

Thisis apointer to the report for which the groups belong.

Thisis apointer to an outer group which is used to obtain the previously
created inner group.

There were no more groups in the report. group is the innermost group.
A pointer to the next group is returned.

report4grouplLast, report4dnumGroups

reportd Function Reference 215

report4hardResets

Usage:
Description:

Parameters:
report
hardResets

Returns:
>=0

<0

See Also:

reportdinit

int report4hardResets(REPORT4 *report, int hardResets)

Thisfunction is used to specify the method in which groups with the reset
page option generate new pages.

Thisis apointer to the report for which the hard reset flag is set.

This parameter is used to determine how page resets are handled.
har dResets may be one of the following values:

Always generate a new page before a group with the reset page flag is
outputted.

Only generate a new page for a group with areset page flag set if the group
is being reset as aresult of its own reset condition being changed. If the
group is outputted as aresult of a higher level group being reset, a new page
isnot generated. If thisfunction is not called, this value is assumed.

The previous hardResets value is returned.
Error. report and/or hardResets was invaid.

group4resetPage

Usage:
Description:

REPORT4 *reportdinit(RELATE4 *relate)

Thisfunction initializes areport structure with default values, and returns a
report pointer which may be used with the rest of the report module
functions. This function is automatically called by report4retrieve.Once the
report is completed, call report4free to free up the memory associated with
the report structure.

reportdinit setsthe following default values:
Margins: Left: 1/4 inch, Right: 1/4 inch, Top O, Bottom O
Page Size: 8 1/2 x 11 inches
Decimal Point: "'
Thousands Separator ;'
Currency Symbol "$"

Default Style: "Plain Text" (Windows: MS Serif 10pt., Non-
Windows. No control codes)

Title/Summary Group Size of zero

216 CodeReporter

Page Header/Footer Group Size of zero

Parameters:
relate
Returns:

Not Zero
returned.

Zero

See Also:

Thisisthe relation upon which the report is based.

The report was successfully initialized and a pointer to the report structure is

Error. The report could not beinitialized. See the CODEA4.error_code
setting for more information.

reportdretrieve, relatedretrieve, reportddo, reportdfree

reportdmargins

Usage:

Description:

Parameters:
report

left

right

top

bottom
unitType

Returns:
0

<0

See Also:

int reportdmargins(REPORT4 *report, long left, long right, long top, long
bottom, int unitType)

This function is used to change the default margins of the report.

Some output devices, such as laser printers, have a hardware margin which is
not under software control. reportdmargins checks for this condition and will
not allow the margins to violate the physical margins of the device.

Thisis apointer to the report for which the margins are set.
Thisisthe size of the left margin in the provided increments.
Thisisthe size of the right margin in the provided increments.
Thisisthe size of the top margin in the provided increments.
Thisisthe size of the bottom margin in the provided increments.

Thisisthe unit of measure for the above margin settings. In graphical user
interfaces, 1000ths of an inch may conveniently be used. In character-
based interfaces, it is often more convenient to use characters. unitType
may be one of the following values:

1 Theunitslisted arein characters.
0 Theunitslisted are in 1000ths of an inch.

If unitType is set for characters, this function assumes ten (10) characters per
inch and six (6) lines per inch.

The margins were successfully set.
Error.

reportdpageSize

reportd Function Reference 217

reportdnumGroups

Usage:
Description:

Parameters:

report

Returns:
0

>0

<0

See Also:

int report4numGroups(REPORT4 *report)

This function returns the current number of groups within the report. Thisis
useful when iterating through the groups in the report.

This REPORT4 pointer indicates the report for which the number of groups
is desired.

There are no groups in the specified report.
Thisis the number of groups added to the report.
An error has occurred.

reportdgroupNext, reportdgroupPrev, group4first, reportdgrouplLast

report4numsStyles

Usage:
Description:

Parameters:

report
desired.

Returns:
>0

<0
See Also:

int report4numStyles(REPORT4 *report)

This function returns the current number of styles within the report. Thisis
useful when iterating through the styles of the report.

This REPORT4 pointer indicates the report for which the number of stylesis

Thisisthe number of styles within the report. There will aways be at least
one style within the report.

An error has occurred.

report4styleFirst, reportdstyleNext, reportdstyleLast, reportdstylePrev

218 CodeReporter

report4output

Usage: int reportdoutput(REPORT4 *report, int outputHandle, int useStyles)

Description: Thisfunction is called prior to report generation and is used to instruct
reportddo to send the report to a system handle such as 'standard out',
'standard print', or an open file. If this function is not called, report4do sends
report output to the 'standard out' monitor.

report4do outputs reports by using the standard C library function write()
which uses a system handle to output text. report4do passes outputHandle
to write().

This function is used when outputting a report to afile.
Parameters:
report Thisisthe report for which adestination is set.

outputHandle Thisisastandard C system handle as returned by C functions such as open()
and sopen(). Other common handles that are pre-defined by the C language
are

1 Thisis'standard out' which is by default the monitor.

4 Thisis'standard print'. On IBM computersthisis usually the
printer on the LPT1 port.

useStyles This parameter is used to determine whether or not the information outputted
by report4do should contain the printer control codes as defined within the
style sheets. useStyles must be one of the following values:

1 The printer pre- and post-control codes are outputted to the
specified handle.

0 The printer control codes are ignored and only the text for the
output objects are outputted.

Returns:
0 The settings were successfully set.
<0 Error. report wasinvalid.

See Also: report4do, report4toScreen

reportd4 Function Reference 219

report4pageFree
Usage: int reportdpageFree(REPORT4 *report)

Description: Thisisalow-level function which is used internally to free the memory
associated with the internal representation of an output page. This function
isautomatically called at the end of the report by report4do.

Parameters:
report Thisisapointer to the report for which the output page is freed.
Returns:
0 The page was successfully freed.
<0 Error.

See Also: report4free, reportdgeneratePage

reportdpageHeaderFooter
Usage: GROUPA4 * group4pageHeaderFooter(REPORT4 *report)

Description: This function returns a GROUP4 pointer to the report's page header and
footer "group.” The returned group, which is automatically created by
reportdinit, cannot be deleted.

Parameters:

report Thisisa pointer to the report that contains the desired page header/footer
"group."

Returns: A GROUP4 pointer to the page header/footer group is returned.

See Also: areadcreate, reportdinit

reportdpagelnit
Usage: int report4pagel nit(REPORTA4 *report)

Description: Thislow-level function is used to create an internal page buffer for report
output. Thisfunction isautomatically called by report4do.

Parameters:
report Thisisapointer to the report for which the internal page buffer is created.
Returns:
0 The page buffer was successfully created.

<0 Error.

220 CodeReporter

See Also:

reportdpageMarginsGet

reportdpageFree, reportd4do

Usage:
Description:

Parameters:
report
|eft

right

top

bottom

Returns:
0

<0

See Also:

report4pageObjFirst

int report4marginsGet(REPORT4 *report, long *left, long *right, long *top,
long *bottom)

This function is used to retrieve the margins set for the report. All margins
areretrieved in increments of a thousandths of an inch.

Thisis apointer to the report for which the margins are retrieved.

Thisisapointer to a(long) variable where the size of the left marginis
stored.

Thisisapointer to a(long) variable where the size of the right margin is
stored.

Thisisapointer to a(long) variable where the size of the top marginis
stored.

Thisisapointer to a(long) variable where the size of the bottom margin is
stored.

The margins were successfully retrieved.
Error. report wasinvalid.

reportdmargins

Usage:
Description:

Parameters:

report

Returns:

>=0
is returned.

0
See Also:

OBJECT4 *report4pageObjFirst(REPORTA4 *report)

Thislow level function is used to retrieve an internal representation of the
evaluated first output object from the current page of the report.

Thisis apointer to the report for which the first object of the current output
pageisretrieved.

An OBJECT4 pointer for the evaluated first object of the current output page

There are no objects on the current page.

report4pageObjNext

report4pageObjNext

reportd Function Reference 221

Usage:
Description:

Parameters:

report

Returns:

>=0

0
See Also:

OBJECT4 *report4pageObjNext(REPORTA4 *report)

This low-level function retrieves the next evaluated output object from the
current page of the report.

Thisis apointer to the report for which the next object of the current output
pageisretrieved.

An OBJECT4 pointer for the evauated next object of the current output
page is returned.

There are no objects on the current page.

reportdpageObjFirst

report4pageSize

Usage:

Description:

Parameters:
report
height
width

unitType

Returns:
0

<0

See Also:

int reportdpageSize(REPORT4 *report, long height, long width,
int unitType)

Thisfunction is used to set the vertical and horizontal page size for the
report. If thisfunction is not called within a Windows application, the
current page size of the selected printer isused. If thisfunction isnot called
in a non-Windows application, the default page size of 25 x 80 charactersis
used.

Thisis apointer to the report for which the page sizeis set.
Thisisthe vertical size of the output page in the specified units.
Thisisthe horizontal size of the output page in the specified units.

This parameter is used to determine the unit of measure used by height and
width. unitType may be one of the following values:

1 The height and width are in characters.
0 The height and width are in 1000ths of an inch.

The page size was successfully set.
Error.

reportdmargins, reportdprinterSelect

222 CodeReporter

reportdpageSizeGet

Usage: int reportdpageSizeGet(REPORT4 *report, long *width, long * height)

Description: This function retrieves the current size of the report page, in thousandths of
aninch.

Parameters:
report Thisisapointer to the report for which the page size is retrieved.
width Thisisapointer to along variable which is to receive the horizontal width of
the page.
height Thisisapointer to along variable which isto receive the vertica height of
the page.
Returns:
0 The page size was successfully retrieved.
<0 Error. report wasinvalid.
See Also: reportdpageSize, reportdmarginsGet
i
EE?EE
report4parent
Usage: int reportdparent(REPORT4 *report, HWND parent)

Description: This function specifies the parent window used for report output. report4do
disables the parent window while the report is being output and sends it the
CRM_REPORTDONE message once the report output window has been
closed.

Parameters:

report Thisisapointer to the report for which the parent window is set.
parent ThisisaMicrosoft Windows window handle which is used for report outpuit.
It is necessary to call this function before report4do. Failure to do so can cause
unpredictable results.
See Also: reportddo, report4free

reportd Function Reference 223

H

reportdprinterSelect

Usage: void report4printerSelect(REPORT4 *report)

Description: This function invokes the "Printer Setup” common dialog to specify a printer
for the report. In order for this function to work correctly, the application
must be running under Microsoft Windows NT/95/98 (or higher) or have the
Microsoft Windows common dialog dynamic link library COMMDLG.DLL
in the system path.

Parameters:

report Thisisapointer to the report that is configured for the selected printer.

H

report4printerDC

Usage: HDC reportdprinterDC(REPORT4 *report, HDC hDC)

Description: Thisfunction is used to specify the handle to a printer device context to
which report output is sent.

Thislow-level function is useful if the handle to the printer device context is
obtained using standard Windows function calls. For an interactive selection
of the report output device, use reportdprinterSelect.

The specified printer device context is not used by report4do if
report4toScreen is called to send output to the screen.

Parameters:

report Thisisapointer to the report that is configured for the specified printer
device context.

hDC Thisisahandleto the printer device context in which the report output is to
be placed.

See Also: report4toScreen, reportdprinterSelect

reportdquerySet

Usage: int reportdquerySet(REPORTA4 *report, char * queryExpr)

Description: This function sets a query for the relation set. The queryExpr expression is
evaluated for each composite record. If the expression evaluatesto a.TRUE.
value, the record is used in the report. If queryExpr evaluates to a .FALSE.
value, the record isignored.

This function overwrites any query expression set with relate4query_set.

224 CodeReporter

Parameters:
report Thisisapointer to the report for which a query is set.

queryExpr Thisisalogical dBASE expression that is used to place alimit on the
composite datafile. If queryExpr isNULL, al the records of the composite
datafile are used within the report.

Field names in the query expression must use the data file qualifier. eg. "DBF-
>NAME='SMITH" "

Returns:
0 The query was successfully set.
<0 Error.

See Also: relatedquery_set, relatedsort_set, report4sortSet

reportdretrieve

Usage: REPORTA4 *reportdretrieve(CODE4 *cb, char *fileName, int openFiles,
char *dataPath)

Description: This function retrieves areport file from disk and constructs the appropriate
REPORT4 structure. Implicitly, arelation set is also created along with a
corresponding RELATE4 structure.

Report files created with CodeReporter and/or report4save are not necessarily
portable from one operating system to another. If a report is needed on another
platform, it may be necessary to link the report with CodeReporter generated
source code.

Parameters:

cb Thisisapointer to the application's CODE4 structure. Thisis used for
memory management and error handling.

fileName Thisisanull terminated character array which contains the drive, directory
and file name of the report file. If no file name extension is provided,
reportdretrieve assumes a.REP extension.

openFiles If openFiles contains atrue value (non-zero), report4dretrieve attempts to
open the data files referenced in the report if they are not already open. If a
referenced data file cannot be located, it and any dependant dave data files
are not included in the report. Any output objects and/or expressions that
use the missing data files are automatically removed from the report. 1f
openFiles contains afalse value (zero), all files are assumed to be open.

dataPath If dataPath isNULL, report4retrieve uses the paths stored in the report file
to locate the report's data files. If the report file does not include path names
to the data files, reportdretrieve assumes the datafiles are in the current
directory. If dataPath isnot NULL, it isassumed to be a null terminated
character array containing the drive and/or directory where all of the report's

Returns:
Not Zero

See Also:

reportd Function Reference 225

datafiles may be located. The dataPath directory overrides any paths stored
within the report.

The report was successfully loaded. The returned REPORT4 pointer may be
used with other report module functions.

Error. The report could not be loaded. This may result from an inability to
locate the top master datafile, or allocate enough memory for the report.

relatedretrieve

report4save

Usage:
Description:

Parameters:
report
fileName

savePaths

Returns:
0

<0

See Also:

int report4dsave(REPORT4 *report, char *fileName, int savePaths)

This function saves a report into a soft-coded report file which may be
retrieved either by the CodeReporter application or reportdretrieve.

report4save does not alter the report in memory in any way. It may be called
before or after report4do with no ill effects.

If a report with graphic output objects is loaded in a non-Windows application and
saved with report4save, the graphic output objects are not saved in the new
report file.

Thisis apointer to the report to be saved to disk.

Thisisanull terminated character array containing the drive, directory, and
file name of the filein which the report is saved. If an extension is provided,
it is used; otherwise the default extension of .REP is appended to thefile
name.

If adrive and/or path is not provided, the current directory is assumed.

If savePaths contains a true value (non-zero), report4save includes the drive
and path for each file referenced in the report within the report file. If
savePaths contains a false value (zero), only the file names are saved within
the report.

The report was successfully saved to the specified file.
Error. report was invaid, or the specified file could not be created.

reportdretrieve

226 CodeReporter

report4separator

Usage: int reportdseparator(REPORT4 *report, char separator)

Description: This function specifies the character to be used as the separator between
hundreds and thousands, between thousands and millions, etc.

Parameters:
report Thisisapointer to the report for which the numeric separator is specified.

separator Thisisthe character used as a numeric separator. If no numeric separator is
desired, pass a zero (0) for separator.

If thisfunction is not called, acomma (,) is used as the default numeric
separator.

Returns:
0 The numeric separator was successfully set.
<0 Error. report wasinvalid.

See Also: obj4numericType

report4sortSet

Usage: int reportdsortSet(REPORT4 *report, char * sortExpr)

Description: This function specifies the sorted order in which the composite records of
the report are retrieved.

|This function overwrites any sort expression set with relate4sort_set.

Parameters:
report Thisisapointer to the report for which the sorted order applies.

sortExpr Thisisanull terminated character array which contains the dBASE
expression used to sort the composite datafile. This expression may
evauate to a Character, Date, or Numeric value.

Field names in the query expression must use the data file qualifier. "DBF-
>NAME='SMITH' " is an example of a valid query expression.

Returns:
0 Success.
<0 Error or report wasinvalid.

See Also: relatedsort_set, reportdquerySet

reportd Function Reference 227

report4styleFirst

Usage: STYLE4 *report4styleFirst(REPORT4 *report)

Description: This function returns a pointer to the first style created for the report. Thisis
useful, in conjunction with report4styleNext, for iterating through the styles
created for areport.

Parameters:
report Thisisapointer to the report which contains styles.
Returns; A pointer to the first style created for the report is returned.
See Also: reportdstyleNext, reportdstyleLast

report4styleLast

Usage: STYLE4 *report4stylel ast(REPORT4 *report)

Description: This function returns a pointer to the last style created for areport. This
function is useful, in conjunction with report4stylePrev, for iterating
backwards through the styles of the report.

Parameters:
report Thisisapointer to the report containing some styles.

Returns. report4styleLast returns a pointer to the last style created. If thereisonly
one style in the report, this function also points to the first style in the report.

See Also: reportdstylePrev, reportdstyleFirst

report4styleNext

Usage: STYLE4 *report4styleNext

Description: This function returns a pointer to the next style created for areport. This
function is useful in conjunction with report4styleFirst to iterate forwards
through the styles within a report.

Parameters:
report Thisisapointer to the report containing some styles.
Returns:
Not Zero A STYLE4 pointer to the next style in the report is returned.
0 There are no more styles within the report.

See Also: reportdstyleFirst, report4stylePrev

228 CodeReporter

report4styleSelect

Usage:
Description:

Parameters:

report

int report4styleSelect(REPORT4 *report, STYLE4 *style)

This function sets the specified style as the "selected" style. All new output
objects are created with this style.

Thisis apointer to the report in which the style is selected.

style This is a STYLE4 pointer to a previoudy created style that is set asthe

Returns:
0
<0

sdlected style.

The style was successfully set.

Error. report or style wereinvalid.

report4styleSelected

Usage:
Description:
Parameters:

report

Returns:

STY LEA4 *report4styleSelected(REPORT4 *report)
This function returns a pointer to the reports "selected” style.

Thisis apointer to the report in which the style is selected.

report4styleSelected returns a STYLE4 pointer to the previously created
selected style. By default, the last style created is the selected style (unless
report4dstyleSelect isused). If no styles have been created, this function
returns a pointer to the report module default "Plain Text" style.

report4styleSheetLoad

Usage:
Description:

Parameters:
report

fileName

overRide

int report4styleSheetl oad(REPORT4 *report, char *fileName, int overRide)

This function adds the styles from a CodeReporter style sheet to the
specified report.

Thisisa pointer to the report in which the new styles are added.

Thisisanull terminated character array containing the drive, directory, and
file name of the CodeReporter style sheet. All CodeReporter style sheets
have a.CRS extension. If fileName does not contain a drive and/or
directory, the current directory is assumed.

This parameter is used to resolve conflicts that occur when stylesin the
report and stylesin the style sheet have the same name. If overRide contains
atrue value (non-zero) reportdstyleSheetLoad usesthe stylesin the style

reportd Function Reference 229

sheet when conflicts occur. If over Ride contains afalse value (zero), the
origina stylesin the report are maintained.

Returns:
1 The style sheet was successfully loaded.

0 Error. Thefile could not be found, it was corrupted, or it was out of date.

report4styleSheetSave

Usage: int reportdstyleSheetSave(REPORTA4 *report, char *fileName)

Description: This function saves the styles within the specified report to a CodeReporter
style sheet.

Parameters:

report Thisisapointer to the report from which the styles are saved.

fileName Thisisanull terminated character array containing the drive, directory, and
file name of the file in which the styles are saved. If adrive and/or directory
are not provided, the style sheet is saved in the current directory. All
CodeReporter style sheets have a .CRS file extension.

Returns:
1 The style sheet was successfully saved.

0 The style sheet could not be saved. Thisisusudly do the attempting to save
over the top of an existing file.

report4titlePage

Usage: int report4titlePage(REPORT4 *report, int titlePage)

Description: This function is used to force a page break after the title ReporT area(s) are
outputted.

Parameters:

report Thisisapointer to the report for which the title page setting applies

tittePage This parameter determines whether or not a page break follows thetitle area.
titlePage may have one of the following settings:

1 A page break is generated after thetitle area(s) are outputted.

0 A page break is not generated after the title area(s) are outputted. If this
function is not caled, this value is assumed.

Returns:
>=0 The previoustitlePage setting is returned.

<0 Error. report or titlePage wereinvalid.

230 CodeReporter

report4titieSummary

Usage:
Description:

Parameters:

report

Returns:
Not Zero
0

GROUPA4 *report4titleSummary(REPORT4 *report)

This function is used to return a GROUP4 pointer for the report's
title/summary group.

Thisis a pointer to the report from which the title/summary group is
retrieved.

A GROUP4 pointer to the group's title/summary group is returned.

Error. report isinvaid.

o

report4toScreen

Usage:
Description:

Parameters:
report

toScreen

Returns:
>=0

<0

See Also:

int report4toScreen(REPORT4 *report, int toScreen)

Thisfunction is used to indicate that report4do should create a window and
send the report output to it, or instead send the report to selected printer. By
default, report4do sends report output to awindow.

Thisis a pointer to the report that is to be outputted to the screen.

This parameter is used in Windows applications to determine where the
report should be sent. toScreen may have one of the following values:

1 A window is created and report output is handled by the
window procedure.

0 Report output is sent to the selected printer.

The previous toScreen setting is returned.
Error. report or toScreen isinvalid.

reportd4output, reportddo

styled Function Reference 231

styled4 Functions

style4color

The style4 functions are used to group a set of font attributes under a
common name which may be associated with output objects using obj4style.

H

Usage:
Description:
Parameters:

style

color

Returns:
0
<0

int styledcolor(STYLE4 *style, RACOLORREF color)
This function changes the Windows RGB color for the specified style.

Thisis apointer to the style for which the color is set.

This parameter is a Windows COLORREF value that describes the color for
the specified style.

The color was successfully set.

Error. stylewasinvalid.

H

style4create

Usage:
Description:

Parameters:
report

font
name
color
pointSize

Returns:
Not Zero

STYLEA4 *styledcreate(REPORTA4 *report, RALOGFONT *font,
char *name, R4ACOL ORREF color, int pointSize)

This function adds a new style to the report using the specified Windows
font.

Thisis a pointer to the report with which the new style is associated.

Thisis apointer to aWindows LOGFONT structure that describes the font
used for the new style.

Thisisanull terminated character array containing the name of the new
style. name may point to up to 19 characters.

This parameter is a Windows COLORREF value that describes the color for
the new style.

Thisisthe size of the font, in points, used for the new style.

The new style was successfully created. The returned pointer may be
considered valid and may be used with other report module functions.

232 CodeReporter

0

style4create

Error. The style was not created.

Usage:
Description:

Parameters:
report
name

beforelen

beforeCodes

afterLen
afterCodes
Returns:
Not Zero

0

STYLEA4 * styledcreate(REPORT4 *report, char *name, int beforeLen, char
*beforeCodes, int afterLen, char *afterCodes)

This function creates a non-Windows style which is used to store the printer-
specific control codes that describe a particular printer typeface.

Thisis a pointer to the report with which the new style is associated.

Thisisanull terminated character array containing the name of the new
style. name may point to up to 19 characters.

Thisisthe length of the printer control code character array that is sent
before the text of the output object.

Thisis acharacter array containing the printer control codes sent before the
text of the output object. These codes should turn 'on’ a specific printer
attribute or typeface.

Thisisthe length of the printer control code character array that is sent after
the text of the output object.

Thisis acharacter array containing the printer control codes sent after the
text of the output object. These codes should turn ‘off' a specific printer
attribute or typeface.

The new style was successfully created. The returned pointer may be
considered valid and may be used with other report module functions.

Error. The style was not created.

styleddelete

Usage:
Description:

Parameters:
report
styleName

Returns:
1

int styleddelete(REPORT4 *report, char *styleName)

This function removes a named style from the report and frees any memory
associated with the style. If the deleted style was the selected style, the first
style in the report becomes the selected style.

Thisis apointer to the report that contains the style to be deleted.

Thisisanull terminated character array that contains the name of the style to
be deleted. styleddelete iterates through the stylesin the report, comparing
the stored names to styleName. If amatch isfound, the styleis removed
from the report.

The style was successfully located and removed.

styled Function Reference 233

0 A stylewith the styleName name was not found within the report.

styledfree

Usage: int styledfree(REPORT4 *report, STYLE4 *style)

Description: This function removes the specified style from the report and frees any
memory associated with the style. If the deleted style was the selected style,
the first style in the report becomes the selected style.

Parameters:
report Thisisapointer to the report that contains the style to be deleted.
style Thisisapointer to the style to be deleted.
Returns:
1 The style was successfully removed.

O Error. report and/or style were invalid.

styledindex

Usage: STYLE4 *styledindex(REPORT4 *report, int stylelndex)

Description: Thisfunction returns a STYLEA4 pointer to the style in the stylelndexth
position.

Parameters:
report Thisisapointer to the report which contains the desired style.

stylelndex Thisisanindex into the reports interna style sheet. Thisfunction is used to
quickly retrieve a pointer to the stylelndexth style in the report. The first

stylein thereport isstyle 1 (one). Thisis used with the report4pageObj
functions.

Returns:
Not Zero ThisisaSTYLE4 pointer to the specified style
0 stylelndex was greater than the number of styles within the report or zero.

See Also: styledlookup, reportdpageObjFirst

234 CodeReporter

styledlookup

Usage:
Description:
Parameters:
report
styleName

Returns:
Not Zero
0

See Also:

STYLEA4 * styledlookup(REPORT4 *report, char *styleName)
Thisfunction returns a STYLE4 pointer to the style with the specified name.

Thisis apointer to the report which contains the desired style.

Thisisanull terminated character array which contains the name of the style
that islooked up.

ThisisaSTYLE4 pointer to the named style.

A style with the styleName name could not be located in the specified
report.

styledindex

total4 Function Reference 235

total4 Functions

Thetotal4 functions are used to specify the information necessary for atotal.
Once created the TOTAL4 pointer may be used with obj4totalCreate to add
atotal output object to the report.

total4addCondition

Usage: int total4create(TOTALA4 *total, char *addConditionSrc, int logical)

Description: Thisfunction is used to specify a conditional accumulation for the total
output object. If addConditionSrcis alogical dBASE expression (and
logical is non-zero), thetotal is accumulated whenever the condition
evaluatesto a. TRUE. value . If addConditionS c is any other type of
expression (and logical is zero), the total is accumulated when the value of
the evaluated condition changes. If thisfunction is not called, the total is
accumulated for every record in the composite datafile.

Parameters:

tota Thisisapointer to the total for which the conditional accumulation is
applied.

addConditionSrc Thisisanull terminated character array containing dBASE expression
which is used to determine when the totd is accumulated. This expression
may evaluate to any type, excluding memo. When this evaluated expression
evaluatesto a. TRUE. value (and logical is non-zero) or if the evauated
expression changes (and logical is zero), the total is accumulated.

logical Thisflagis used to determine whether the total is accumulated on alogical
condition or a change of value. When logical contains atrue value (non-
zero) addConditionSrc is assumed to evaluate to alogical value. When
logical contains afalse value (zero), the total is accumulated only when the
evaluated expression changes. It is possible to have addConditionSrc
evaluate to alogical value and have logical be false (zero). In this case, the
total would be accumulated when the evaluation of the expression changes
from .TRUE. to.FALSE. andfrom .FALSE. tO .TRUE.

Returns:
0 The condition was successfully added to the total output object.

<0 Error. Aninvalid parameter was passed, addConditionS ¢ did not evaluate
to alogical value when logical was set to true (non-zero), or
addConditionSrc could not be evaluated.

See Also: obj4atotalCreate, expracalc_create

236 CodeReporter

total4create

Usage: TOTALA4 *total4create(REPORT4 *report, char *totalName, char
*total Expr, int type, char *resetExpr)
Description: This function defines atotal which is used in obj4totalCreate.
Parameters:
report Thisisapointer to the report for which the total is to be added.
totalName Thisisanull terminated character array containing the descriptive name
used in other dBASE expressions to reference the total. This name may not
contain spaces.
totalExpr Thisisanull terminated character array containing a numeric dBASE
expression upon which the total is created. This may smply be a datafile
field, or acalculation created with CodeBase 5 function expr4calc_create.
All data file fields referenced within the totalExpr expression must have a field
qualifier.
type Thisflagis used to determine how the total is to maintain its value when the
total output object is evaluated. type may have one of the following constant
values:
totaldaverage This constant creates atotal that maintains the arithmetic mean (average)
value of the total Expr expression.
total4highest This constant creates atotal that stores the highest value encountered for the
total Expr expression.
total4lowest This constant creates atotal that stores the lowest value encountered for the
total Expr expression.
total4sum This constant creates a total that maintains an arithmetic sum of all values
encountered for the total Expr expression.
resetExpr Thisisanull terminated character array that contains a dBASE expression
which is used to determine when the value of the total output object is reset
toitsinitial value.
Returns:
Not Zero A pointer to a successfully created tota is returned.
0 There were problems parsing the dBASE expressions.
See Also: obj4totalCreate, expracalc_create
total4free
Usage: void total4free(TOTAL4 *tota)
Description: Thislow-leve function frees any memory associated with the total
definition. Thisfunction isautomatically called by obj4totalFree.
Parameters:
tota Thisisapointer to the total definition to be created.

See Also:

obj4totalFree, total4create

Appendix A: dBASE Functions 237

Appendix A: dBASE Functions

dBASE Expression Functions

The functions listed below can be used as a dBASE expression or as part of
an dBASE expression. Like dBASE operators, constants, and fields,
functions return avalue. Functions always have a function name and are
followed by aleft and right bracket. Vaues (parameters) may be inside the
brackets.

Function List

CTOD(Char_Value)

DATE()

The character to date function converts a character value into a date value;
eg. " CTOD("11/30/88")"

The character representation is always in the format specified by the
Code4::dateFormat member variable which is by default "MM/DD/YY".

The system date is returned.

DAY(Date_Value)

DESCEND()

DEL()

DELETED()

Returns the day of the date parameter as a numeric value from "1" to "31".
eg. "DAY (DATE()"
Returns"30" if it isthe thirtieth of the month.

(Clipper Compatibility Only) Returns a complemented version of an
expression.

Returns "*" if the current record is marked for deletion. Otherwise™ " is
returned.

Returns .TRUE. if the current record is marked for deletion.

DTOC(Date Value)

The date to character function converts a date value into a character value.

238 CodeReporter

The format of the resulting character value is specified by the
Coded::dateFormat member variable which is by default "MM/DD/YY™".

eg. " DTOC(DATE()) "
Returns the character value "05/30/87" if the date is May 30, 1987.

DTOS(Date_Value)

The date to string function converts a date value into a character value. The
format of the resulting character value is"CCYYMMDD".

eg. " DTOS(DATE()) "
Returns the character value "19870530" if the date is May 30, 1987.

IIF(Log_Value, True_Result, False_Result)

If 'lLog_Vaue is. TRUE. then IIF returns the True_Result' value. Otherwise,
IIF returns the 'False_Result’ value. Both True Result and False Result must
be the same length and type. Otherwise, an error results.

eg. "IlF(VALUE << 0, "Lessthan zero ", "Greater than zero")"

e.g. ."llF(NAME = "John", "The name is John", "Not John ")
LTRIM(Char_Value)

This function trims any blanks from the beginning of the expression.
MONTH(Date_Value)

Returns the month of the date parameter as a numeric.
eg." MONTH(DT_FIELD)"
Returns 12 if the date field's month is December.

PAGENO()
When using the report module or CodeReporter, this function returns the
current report page number.

RECCOUNT()
The record count function returns the total number of recordsin the database:
eg. " RECCOUNT() "
Returns 10 if there are ten records in the database.

RECNO()

The record number function returns the record number of the current record.
STOD(Char_Value)

The string to date function converts a character value into a date value:
eg. " STOD("19881130") "

Appendix A: dBASE Functions 239

The character representation is in the format "CCYYMMDD".
STR(Number, Length, Decimals)

The string function converts a numeric value into a character value.
"Length” is the number of charactersin the new string, including the decimal
point. "Decimals' isthe number of decimal places desired. If the number is
too big for the allotted space, *'s will be returned.

eg." STR(5.7,4,2)" returns " '570'"

The number 5.7 is converted to a string of length 4. 1n addition, there will be
2 decimal places.

eg. " STR(5.7,3,2) "returns " "*x*'"

The number 5.7 cannot fit into astring of length 3 if it is to have 2 decimal
places. Consequently, *'sarefilled in.

SUBSTR(Char_Value, Start_Position, Num_Chars)

A substring of the Character value is returned. The substring will be
'Num_Chars' long, and will start at the 'Start_Position' character of
'‘Char_Value.

eg. " SUBSTR("ABCDE", 2,3)" returns " 'BCD""
eg. "SUBSTR("Mr. Smith", 5,1)" returns "'S™"

TIME()
The time function returns the system time as a character representation. It
uses the following format: HH:MM:SS.
eg." TIME() " returns" 12:00:00 " if it is noon.
eg." TIME() " returns" 13:30:00 " if it isone thirty PM.
TRIM()

This function trims any blanks off the end of the expression.
UPPER(Char_Value)
A character string is converted to uppercase and the result is returned.

VAL(Char_Value)
The value function converts a character value to a numeric value.
eg. " VAL('10)" returns "10"
eg. " VAL("-87")" returns " -8.7"
YEAR(Date Value)
Returns the year of the date parameter as a numeric:
eg. "YEAR(STOD('19920830'))" returns " 1992 "

Appendix B: Keyboard Interface 241

Appendix B: Keyboard Interface

CodeReporter requires a Microsoft compatible mouse. There are certain
actions, such as placing output objects, which may only be done with a
mouse.

Most other actions may be performed both with the mouse and with the
keyboard. This appendix systematically lists the keyboard controls and the
actions they perform.

Menu Accelerators

Menu accelerators are a single keystroke that perform a menu action, thus
saving the time and keystrokes necessary to activate many of the common
CodeReporter tasks.

Ctrl-A
AREA | NEw HEADER AREA. This accelerator creates a new header areafor the
selected group.

Ctrl-C
EpiT| Copy. A copy of the currently selected output objects are placed
within the Windows clipboard, where they may be retrieved in CodeReporter
using EbiT | PASTE.

Ctrl-Insert
EpiT| Copy. A copy of the currently selected output objects are placed
within the Windows clipboard, where they may be retrieved in CodeReporter
using EbiT | PASTE.

Ctrl-E

ALIGN | CENTER. This accelerator moves the selected object so that its center
is a the horizontal center of the report. If multiple objects are selected, this
accelerator aligns the centers of all of the selected output objects with the
center of the first object selected.

242 CodeReporter

Ctrl-F
AREA | NEw FOOTER AREA. This accelerator creates anew footer area for the
selected group.

Ctrl-G
GRroups | NEw. This accelerator invokes the "Group Settings' dialog and
creates a new group, including a header and footer area.

Ctrl-H
SENSITIVITY | SPACE HORIZONTAL. This accelerator moves all selected output
objects so that the horizontal distance between them isequal. Thefirst and
the last selected output objects are not moved.

Ctrl-L
ALIGN | LEFT. This accelerator moves all selected output objects so that their
left edges are aligned with the left edge of the first selected object.

Ctrl-M
GRroups | Mopiry. This accelerator invokes the "Group Settings' dialog for
the currently selected group.

Ctrl-O
AREA | MoDIFY AREA. This accelerator invokes the "Modify Ared' dialog for
the selected area.

Ctrl-P
FiLe | PRINT. This accelerator invokes the "Print" dialog which may be used
to output the current report to the specified printer.

Ctrl-R
ALIGN | RIGHT. This accelerator moves all selected output objects so that their
right edges are aligned with the right edge of the first selected object.

Ctrl-S

FiLE | SAVE. This accelerator saves the current report to disk. If the report
has not previously been saved, CodeReporter prompts the designer for afile
name.

Appendix B: Keyboard Interface 243

Ctrl-T

SENSITIVITY | SPACE VERTICAL. This accelerator moves all selected output
objects so that the vertical distance between them isequal. Thefirst and the
last selected output objects are not moved.

Ctrl-V

EpiT | PasTE. CodeReporter is put into insertion mode for output objects
within the Windows clipboard. If the Windows clipboard contains smple
text from another application, CodeReporter creates atext output object. If
the Windows clipboard contains a bitmap image, it is placed within the report
as a static graphic object.

Shift-Insert

EpiT | PasTE. CodeReporter is put into insertion mode for output objects
within the Windows clipboard. If the Windows clipboard contains smple
text from another application, CodeReporter creates atext output object. If
the Windows clipboard contains a bitmap image, it is placed within the report
as a static graphic object.

Ctrl-w

FILE | PRINT PREVIEW. This accelerator creates a full screen window and
outputs the report within the window.

Ctrl-X

EpiT| Cut. The currently selected output objects are removed from the
report and placed within the Windows clipboard, where they may be retrieved
in CodeReporter using EDIT | PASTE.

Shift-Delete

EpiT| Cut. The currently selected output objects are removed from the
report and placed within the Windows clipboard, where they may be retrieved
in CodeReporter using EDIT | PASTE.

Delete

OBJecT | DELETE. This accelerator deletes the currently selected output
object. If no object is selected, nothing happens.

Esc

OBJECT | NoNE. This accelerator moves CodeReporter out of insertion
mode.

244 CodeReporter

Report Design Screen

The report design screen accepts the following keystrokes as equivaencies
for many mouse generated actions.

Tab

The Tab key sets the next object in an area as the "selected” output object. If
the Tab key is pressed while the last object in an areais selected, the first
object is selected. If no object is selected, pressing the Tab key selectsthe
first object in the selected area.

Shift-Tab

The Shift-Tab key combination performs the same selection process as the
Tab key. The only differenceis that the Shift-Tab key combination cycles
backwards through the objects in the selected area.

Ctrl-Tab

The Ctrl-Tab key combination is used to multiply select the output objectsin
the selected area. This key combination selects the next object in the area
while keeping all previoudy selected output objects selected.

Shift-Ctrl-Tab

The Shift-Ctrl-Tab key combination performs the same selection process as
the Ctrl-Tab combination. The only differenceis that this combination cycles
backwards through the objects in the selected area.

Page Up

These keystrokes scroll the report design screen up one screen full. If al of
the report design elements are visible on the current screen, these keys do
nothing.

Shift-Up Arrow

These keystrokes scroll the report design screen up one screen full. If al of
the report design elements are visible on the current screen, these keys do
nothing.

Appendix B: Keyboard Interface 245

Page Down

These keystrokes scroll the report design screen down one screen full. [If all
of the report design eements are visible on the current screen, these keys do
nothing.

Shift-Down Arrow

These keystrokes scroll the report design screen down one screen full. If all
of the report design eements are visible on the current screen, these keys do
nothing.

Shift-Left Arrow

This keystroke scrolls the report design screen to the left alittle bit. If al of
the report design elements are visible on the current screen, this key does
nothing.

Shift-Right Arrow

This keystroke scrolls the report design screen to the right alittle bit. If al of
the report design elements are visible on the current screen, this key does
nothing.

Ctrl-Left Arrow

This keystroke scrolls the report design screen al the way to the right edge of
thewindow. If al of the report design elements are visible on the current
screen, this key does nothing.

Ctrl-Right Arrow

This keystroke scrolls the report design screen all the way to the right edge of
thewindow. If al of the report design elements are visible on the current
screen, this key does nothing.

Return

This keystroke invokes the Object Menu for the currently selected output
object. If no objects are selected, this key does nothing.

246 CodeReporter

Appendix C: Cursors 247

Appendix C: Cursors

When the report designer has put CodeReporter into insertion mode for a
particular output object type, the mouse cursor alters its shape to indicate the
insertion mode as well as the type of object being inserted. Listed below are
the different types of cursors and the type of output object they insert. Each
cursor has a"cross-hairs'. The intersection of the two lines indicates the
position of the upper left corner the new output object occupies.

CodeReporter may be moved out of insertion mode by selecting the
“"None" button on the button bar, or by pressing the ESC key.

Cc

|I'|1

|'|1

(O

|13

2

This cursor is used to indicate that CodeReporter isin
insertion mode for calculation output objects.

This cursor is used to indicate that CodeReporter isin
insertion mode for expression output objects.

This cursor is used to indicate that CodeReporter isin
insertion mode for field output objects. If multiple fields
were selected, they are placed horizontally or vertically (as
set in the "Field Layout” dialog") from this point.

This cursor is used to indicate that CodeReporter isin
insertion mode for frame output objects.

This cursor is used to indicate that CodeReporter isin
insertion mode for horizontal line output objects. Linesare
created with a default length.

This cursor is used to indicate that CodeReporter isin
insertion mode for vertical line output objects. Linesare
created with a default length.

This cursor indicates that CodeReporter isin insertion
mode for objects placed in the Windows clipboard. If
multiple output objects were cut or copied to the clipboard,
they are pasted in relation to the first object pasted.

248 CodeReporter

Q This cursor is used to indicate that CodeReporter isin
—— insertion mode for text output objects.

T This cursor is used to indicate that CodeReporter isin
— insertion mode for total output objects.

Appendix D: ASCII Chart - Partial 249

Appendix D: ASCII Chart - Partial

Listed below are the most commonly used charactersin printer control codes, and
their hexadecimal equivaent. Most printer manuals list the hexadecimal values
for the control codes. Thisis provided merely as an additional reference.

ASCII Dec Hex ASCIl | Dec Hex ASCII Dec Hex
ESC 27 1B D 68 44 h 104 68
! 33 21 E 69 45 i 105 69
34 22 F 70 46 j 106 6A
35 23 G 71 47 k 107 6B
$ 36 24 H 72 48 | 108 6C
% 37 25 | 73 49 m 109 6D
& 38 26 J 74 4A n 110 6E
' 39 27 K 75 4B o) 111 6F
(40 28 L 76 4C p 112 70
) 41 29 M 77 4D q 113 71
* 42 2A N 78 4E r 114 72
+ 43 2B o) 79 4F s 115 73
, 44 2C P 80 50 t 116 74
- 45 2D Q 81 51 u 117 75
46 2E R 82 52 v 118 76
/ 47 2F S 83 53 w 119 77
0 48 30 T 84 54 X 120 78
1 49 31 u 85 55 y 121 79
2 50 32 \Y 86 56 z 122 7A
3 51 33 W 87 57 { 123 7B
4 52 34 X 88 58 | 124 7C
5 53 35 Y 89 59 } 125 7D
6 54 36 z 90 5A ~ 126 7E
7 55 37 [91 5B
8 56 38 \ 92 5C
9 57 39] 93 5D
58 3A A 94 5E
; 59 3B _ 95 5F
< 60 3C) 96 60

250 CodeReporter

61

62
63

65
66
67

97

98
99

100
101
102

103

3D
3E
3F
40

41

42

61

62
63

65
66
67

Appendix E: Error Codes

Appendix E: Error Codes

This appendix documents the error codes that are returned by the
CodeReporter API functions when an error occurs. Other CodeBase error
codes, which may be returned as well, are documented in the respective
CodeBase reference manual.

Constant Name

Value | Meaning

edreport

edstyle_create

edstyle_select

edstyle_index

edarea_create

e4group_create

edgroup_expr

edtotal_create

-810 | Report Error

General reporting error. Any report error not covered below is
an e4report error.

-811 | Error Creating Style

The style could not be created due to a duplicate style name
existing, or amemory shortage.

-812 | Error Sdlecting Style

Aninvalid STYLE4 pointer was provided to a style selection
function.

-813 | Error Finding Style

The specified style could not be located. This may result from
either passing an invalid STYLE4 pointer, or from passing a
non-existant style name to a style look up function.

-814 | Error Creating Area

The area could not be created due to afailure to allocate
memory for the area or parse the suppression expression.

-815 | Error Creating Group

The group could not be created due to alack of memory, or
invalid GROUP4 parameter.

-816 | Error Setting Group Reset Expression
The group reset expression could not be parsed correctly.
-817 | Error Creating Total

The total output object could not be created due to alack of
memory, due to an invalid numeric calculation, or an invalid

252 CodeReporter

edobj_create

edrep_win

edrep_out

e4drep_save

edrep_ret

edrep_data

-818

-819

-820

-821

-822

-823

reset expression.
Error Creating Object

The output object could not be created due to alack of memory,
or to aninvalid AREA4 pointer.

Error In Windows Output

An error occurred registering the Windows output window class,
or CreateWindow failure.

Error In Report Output

The evaluation of an output object caused an error. Thisis
usually due to alack of memory.

Error Saving Report

An error occurred while saving areport file. This may be due to
the file already existing, alack of disk space, or afile creation
problem.

Error Retrieving Report

The report file could not be retrieved from disk. Thismay bea
result of not being able to locate the top master datafile, or from
the report file being corrupt.

Error in creating output data file

The report could not be sent to an output data file due to afile
creation error, or a data storage error.

Appendix F; Basic/Pascal APl 253

Appendix F: Basic/Pascal API

This section documents the available functions for running and modifying
reports when using the CodeBase Basic or Pascal API. Using these functions
you can perform such operations as retrieving reports from disk, displaying
and modifying reports on the fly, and saving any changes back to disk.

All the functions listed in this section, except for three, are report4 functions.
The three exceptions are relate4 functions. These functions can be used in
conjunction with CodeReporter's FILE | SAVE RELATION option to visually
build sophisticated relations that can be saved to disk. These relations can
then be retrieved for use in your application.

PROGRAM Visual Basic test application
REPTEST.BAS

Sub ReportTest (cb As Long, Report As Form)
Dim IReport As Long

'Retrieve report file TUT1.REP
IReport = reportdretrieve(cb, App.Path + "TUT1", 1, App.Path)

‘Check for Error

If IReport =0 Then
rc = codederrorCode(cb, 0)
Exit Sub

End If

'‘Change some of the report's attributes
rc = report4caption(IReport, "New Caption")
rc = report4currency(IReport, "£")

'‘Change report's relation set
rc = reportdquerySet(IReport, "STUDENT->L_NAME > 'R™)
rc = report4sortSet(IReport, "STUDENT->L_NAME")

‘Save changes to a different file
rc = report4save(lReport, App.Path + "\STUDENT2", 1)

'Set the report's Parent handle before displaying report
rc = report4parent(IReport, Report.nWnd)

'Send report to screen rc = report4do(IReport)

254 CodeReporter

'Set the output printer Call report4printerSelect(IReport)

‘Now send to printer
rc = report4toScreen(IReport, 0)
rc = report4do(IReport)

'Free memory and close files
Call report4free(IReport, 1, 1)

End Sub

relatedretrieve

VB Usage:

Delphi Usage:

Description:

Parameters:
(vb/del phi)
CODE4/c4

fileName

openFiles

RELATEA4& = relatedretrieve(CODE4&, fileName$, openFiles¥s,
dataPathName$)

Function relatedretrieve (c4 : CODE4 ; fileName : PChar;
openFiles : Integer; dataPathName : PChar) : RELATE4;

This function retrieves arelation file and constructs the relation that was
saved with relate4save. In the process of loading the relation file,
relatedretrieve may aso open the relation's datafiles.

For complex relations, use CodeReporter and it's RELATION/SAVE RELATION
menu option to visually build the relation set and save it to disk. You can then
retrieve this relation into your application with relate4retrieve.

Thisis a pointer to the application's CODE4 structure. Thisis used for
memory management and error handling.

Thisisanull terminated character array which contains the file name
(including drive and directory) of the relation file. A file extension need not
be provided since the .REL extension is aways used.

If openFilesisatrue value (non-zero), relatedretrieve attempts to open the
data, index, and memo files referenced in the saved relation file if they are
not already opened. If relatedretrieve cannot find a certain datafile
referenced in the relation file, that file and al lower level dave datafiles of
that file are omitted from the relation and an attempt is made to locate the
next datafile.

If openFilesisafase vaue (zero), relatedretrieve assumesthat al of the
data, index, and memo files are aready opened. If adatafile referenced in the
relation file is not opened, that file and all lower level dave datafilesin the
relation are omitted from the relation and the relate4retrieve continues to
build the relation.

dataPathName

Returns.
Not Zero

Zero

See Also:

relate4save

Appendix F: Basic/Pascal APl 255

This parameter is anull terminated character array containing a new drive
and path for the data, index, and memo files stored in the relation file. If
dataPathName is NULL, the paths stored in the relation file are used. If no
paths were stored in thefile, relatedretrieve attempts to open the filesin the
current directory. If dataPathName is specified, it is used to override the
paths saved within the relation file.

The relation was successfully retrieved from the specified relation file.

An error occurred while reading the relation file or opening the relation's top
master datafile. Seethe CODE4.error_code member variable for the
specific error setting.

relatedsave, relatedinit, relatedfree

VB Usage:
Delphi Usage:

Description:

Parameters:
(vb/del phi)

RELATE4/r4

fileName

savePathNames

Returns:
0

r4no_create

<0
See Also:

rc% = relatedsave(RELATEA4&, fileName$, savePathNames%o)

Function relatedsave (r4 : RELATE4 ; fileName : PChar;
savePathNames : Integer) : Integer ;

This function saves the specified relation in arelation file.

Thisis apointer to the relation that isto be saved to arelation file.

Thisisanull terminated character array which contains the file name
(including drive and directory) of therelation file. A file extension need not
be provided since the .REL extension is aways used.

If this parameter contains a true value (non-zero), related4save saves the full
path name of the files used in the relation. If savePathNames contains a
false vaue (zero), only the actual file nameis saved.

The relation file was successfully saved.

Therelation file could not be created. Thisis generally caused when
fileName conflicts with afile that already exists, or if the application does
not have read/write privilegesto the desired drive.

Error.

relatedretrieve

256 CodeReporter

relate4topMaster

VB Usage:
Delphi Usage:

Description:

Parameters:
(vb/del phi)

RELATE/r4
Returns:
Not Zero

0

RELATE4& = relatedtopMaster(RELATEA4&)
Not available.

This function returns a pointer to the RELATE4 structure of the top master in
the relation set. Thisfunction isonly valid from Visual Basic.

Thisis apointer to any RELATE4 structure in the relation set.

A pointer to the RELATE4 structure of the top master relation.
Error.

H

reportdcaption

VB Usage:
Delphi Usage:
Description:
Parameters:
(vb/delphi)
REPORT4/r4

caption

Returns:
0
<0

rc% = reportdcaption(REPORT4&, caption$)
Function reportdcaption (r4 : REPORT4; caption : PChar) : Integer;

This function sets the text of the caption for the report output window when
the report is sent to the screen.

Thisisa REPORTA4 pointer to the report for which the window caption is
Set.

Thisisastring containing the text to be placed in the caption portion of the
output window. report4caption makes acopy of caption.

The caption was set successfully.

Error.

Appendix F: Basic/Pascal APl 257

reportdcurrency
VB Usage: rc% = reportdcurrency(REPORT4&:, currency$)
Delphi Usage: Function report4dcurrency (r4 : REPORT4; currency : Char) : Integer;
Description: This function sets the text to be displayed immediately to the left of numeric
output objects that are formatted as currency values.
Parameters:
(vb/delphi)
REPORT4/r4 ThisisaREPORT4 pointer to the report for which the currency characters
are set.
currency Thisisastring containing the currency symbol(s). currency may contain up
to ten (10) characters. reportd4currency makes acopy of currency. If this
function is not called, the dollar symbol ($) is assumed.
Returns:
0 The currency character(s) were set successfully.
<0 Error.
report4dateFormat
VB Usage: rc% = reportddateFormat(REPORT4&, format$)
Dephi Usage: Function reportddateFormat (r4 : REPORTA4; format : PChar) : Integer;
Description: This function sets the default date format for the specified report. All new
output objects that evaluate to a date value, by default, use this format for
output. When the report isinitially created, the value of the
CODE4.date_format member variable is stored within the report's default
date format.
Parameters:
(vb/delphi)
REPORT/r4 Thisisapointer to the report for which the date format is set.
format Thisisastring which contains the date format to be used. This string should
contain the picture formatting characters ('D’, ‘M’ 'C', 'Y").
report4dateFormat creates a copy of format.
Returns:
0 Success.
<0 Error. REPORT4 wasinvalid.

258 CodeReporter

report4decimal

VB Usage:
Delphi Usage:

Description:

Parameters:
(vb/del phi)

REPORT4/r4

decimalChar

Returns:
0
<0

report4do

rc% = report4decimal (REPORT4&, decimalChar$)
Function report4decimal (r4 : REPORT4; decimalChar : Char) : Integer;

This function specifies the character to be used as the decimal separator
between the whole a fractional portion of a number in a numeric output
object.

ThisisaREPORTA4 pointer to the report for which the decimal character is
used.

Thisisthe character used as the decimal separator. The default character is
the decimal point ('.").

Success.
Error. REPORT4 was invalid.

VB Usage:
Delphi Usage:

Description:

Parameters:
(vb/del phi)

Returns:
0

rd4terminate

<0
See Also:

rc% = reportddo(REPORT4&)
Function report4do (r4 : REPORT4) : Integer;

This function causes the specified report to be outputted to the
selected device.

When outputting the report under Windows, report4do disables the report's
parent window (specified by report4parent) until the report window has
been closed. This prevents the application from possibly updating any
report-specific database information while the report is executing.

For Windows programs, you must call report4parent before calling this
function. Failure to do can cause unpredictable results.

REPORTA4/r4 specifies the report to be outputted.

Success. The report was successfully outputted.

A relation was unable to be made and the error action specified with
relatederrorAction was relatedterminate.

Error.

report4toScreen, report4printerSelect, reportd4output

Appendix F: Basic/Pascal APl 259

reportdfree
VB Usage: Call reportdfree(REPORT4&, freeRelate%, closeFiles%)
Delphi Usage: Procedure report4free (r4 : REPORT4; freeRelate : Integer;
closeFiles: Integer);
Description: Thisfunction frees all memory associated with the report.
Parameters:
(vb/delphi)
REPORT4/r4 ThisisaREPORT4 pointer which specifies the report to be freed from

freeRelate

closeFiles

memory.

If this parameter contains a true value (1), the memory associated with
the report's relation is automatically freed. If afase value (0) is passed,
the relation is unaffected.

Setting this parameter to atrue value (1), causes REPORT4FREE tO
automatically close the data, index, and memo files referenced in the report.
If closeFilesisfase, or if freeRelate isfalse, this setting isignored.

reportdmargins

VB Usage:

Delphi Usage:

Description:

Parameters:
(vb/del phi)

REPORT4/r4
left

right

top

bottom

rc% = reportdmargins(REPORT4&, left&, right& , top&,
bottom& , unitType%)

Function reportdmargins (r4 : REPORT4; left, right, top, bottom : Longint;
unitType: Integer) : Integer;

This function is used to change the default margins of the report.

Some output devices, such as laser printers, have a hardware margin which is
not under software control. reportdmargins checks for this condition and will
not allow the margins to violate the physical margins of the device.

ThisisaREPORT4 pointer to the report for which the margins are set.
Thisisthe size of the left margin in the provided increments.
Thisisthe size of the right margin in the provided increments.
Thisisthe size of the top margin in the provided increments.

Thisisthe size of the bottom margin in the provided increments.

260 CodeReporter

unitType

Returns:
0

<0

See Also:

Thisisthe unit of measure for the above margin settings. In graphical user
interfaces, 1000ths of an inch may conveniently be used. In character-
based interfaces, it is often more convenient to use characters. unitType
may be one of the following values:

1 Theunitslisted arein characters.
0 Theunitslisted are in 1000ths of an inch.

The margins were successfully set.
Error.

reportdpageSize

report4pageSize

VB Usage:
Delphi Usage:

Description:

Parameters:
(vb/del phi)

REPORT/r4
height
width

unitType

Returns:
0

<0

See Also:

rc% = reportdpageSize(REPORT4&, height&, width&, unitTypedo)

Function report4pageSize (r4 : REPORT4; height : Longint;
width : Longint; unitType : Integer) : Integer;

Thisfunction is used to set the vertical and horizontal page size for the
report. For a Windows application, the default setting is the current page
size of the selected printer. For a non-Windows application, the default
setting is 25x80 characters.

Thisis apointer to the report for which the page sizeis set.
Thisisthe vertical size of the output page in the specified units.
Thisisthe horizontal size of the output page in the specified units.

This parameter is used to determine the unit of measure used by height and
width. unitType may be one of the following values:

1 The height and width are in characters.
0 The height and width are in 1000ths of an inch.

The page size was successfully set.
Error.

reportdmargins, reportdprinterSelect

Appendix F: Basic/Pascal APl 261

i

report4parent

VB Usage:
Delphi Usage:

Description:

Parameters:
(vb/del phi)

REPORTA4/r4
Form.hWnd/hwW

Returns:
0
<0

rc% = reportdparent(REPORT4&, Form.hwnd%)
Function reportdparent (r4 : REPORT4; hw : HWND) : Integer;

This function designates the parent window handle of the window created
for report output. Form.hWnd should be the .hWnd property of the formin
your Visua Basic application where focus will be returned to when the
report window is closed.

ThisisaREPORT4 pointer to the report for which the parent window is set.

Thisis a Microsoft Windows window handle to the form whose focus will
be set to when the report isfinished. If output is begin sent to awindow, this
form will be disabled until the report window is closed.

Success
Error. REPORT4 isinvalid.

For Windows applications, this function must be called before calling report4do.
Failure to do so can cause unpredictable results.

=

reportdprinterSelect

VB Usage:
Delphi Usage:

Description:

Parameters:
(vb/del phi)

REPORT4/r4

Call reportdprinterSelect(REPORT4&)
Procedure report4printerSelect (r4 : REPORT4);

This function invokes the "Printer Setup” common dialog to specify a printer
for the report.

This function requires the presence of the Microsoft Windows 3.1 Dynamic
Link Library, COMMDLG.DLL. Normally the Windows Setup application
installs this file in your \WINDOWS\SY STEM sub-directory. If your
application runs under Windows 3.0, or you don’'t have thisfile installed in
an appropriate directory, this function will not succeed.

ThisisaREPORT4 pointer to the report that is configured for the selected
printer.

262 CodeReporter

report4dquerySet

VB Usage:
Delphi Usage:

Description:

Parameters:
(vb/del phi)

REPORT/r4

queryExpr

Returns:
0

<0

See Also:

rc% = reportdquerySet(REPORT4&, queryExpr$)
Function reportdquerySet (r4 : REPORT4; queryExpr : PChar) : Integer;
This function sets a query for the report’s relation set.

The queryExpr expression is evaluated for each composite record. If the
expression evaluates to a. TRUE. value, the record is used within the report.
If queryExpr evaluates to a .FALSE. value, the record isignored.

Thisisa REPORTA4 pointer to the report for which a query is set.

Thisisalogical dBASE expression that is used to place alimit on the
composite datafile. If queryExpr isanull string (“”), al the records of the
composite data file are used within the report.

Field names in the query expression must use the data file qualifier. eg. "DBF-
>NAME='SMITH' " is an example of a valid query expression.

The query was successfully set.
Error.

relatedquerySet, relatedsortSet, reportdsortSet

reportdrelate

VB Usage:
Delphi Usage:

Description:

Parameters:
(vb/delphi)

REPORT4/r4

Returns:
Not Zero
0

See Also:

RELATEA4& = reportdrelate(REPORT4&)
Function reportdrelate (r4 : REPORT4) : RELATEA4;

This function returns a pointer to the RELATE4 structure associated with the
report.

Thisisa REPORTA4 pointer to the report for which the associated RELATE4
pointer is returned.

The RELATEA4 pointer associated with the report.
Error.

report4querySet, reportd4sortSet

Appendix F: Basic/Pascal APl 263

reportdretrieve

VB Usage:

Delphi Usage:

Description:

Parameters:
(vb/del phi)

CODE4/c4

fileName

openFiles

dataPath

Returns:

Not Zero

REPORT4& = report4retrieve(CODE4&, fileName$, openFiles¥%,
dataPath $)

Function reportdretrieve (¢4 : CODE4; fileName : PChar;
openFiles : Integer; datapath : PChar) : REPORTA4;

This function retrieves areport file from disk and constructs the appropriate
REPORT4 structure.

Implicitly, arelation set is also created aong with a corresponding
RELATEA4 structure.

Thisis a pointer to the application's CODE4 structure. Thisis used for
memory management and error handling.

Thisisastring which contains the drive, directory and file name of the
report file. If no file name extension is provided, report4retrieve assumes a
.REP extension.

If openFiles contains atrue value (1), report4retrieve attemptsto

open the data files referenced in the report if they are not already open. If a
referenced data file cannot be located, it and any dependant dave data files
are not included in the report. Any output objects and/or expressions that
use the missing data files are automatically removed from the report.

If openFiles contains afalse value (0), al files are assumed to be open.

If dataPath isanull string (“"), report4retrieve uses the paths stored in the
report file to locate the report's data files. If the report file does not include
path names to the data files, report4retrieve assumes the datafiles arein the
current directory.

If dataPath is not null, it is assumed to be a string containing the drive
and/or directory where al of the report's data files may be located. The
dataPath directory overrides any paths stored within the report.

The report was successfully loaded. The returned REPORT4 pointer may be

used with other report module functions.

0

See Also:

Error. The report could not be loaded. This may result from an inability to
locate the top master datafile, or allocate enough memory for the report.

relatedretrieve

264 CodeReporter

report4save

VB Usage:
Delphi Usage:

Description:

Parameters:
(vb/del phi)

REPORT4/r4

fileName

savePaths

Returns:
0

<0
created.

See Also:

rc% = reportdsave(REPORT4&., fileName$, savePaths%)

Function reportdsave (r4 : REPORT4; fileName : PChar;
savePath : Integer) : Integer;

This function saves areport into a soft-coded report file which may be
retrieved either through CodeReporter or by calling reportdretrieve.

report4save does not alter the report in memory in any way. It may be called
before or after report4do with no il effects.

If a report with graphic output objects is loaded in a non-Windows application,
and saved with report4save, the graphic output objects are not saved in the
new report file.

Thisisa REPORTA4 pointer to the report to be saved to disk.

Thisisastring containing the drive, directory, and

file name of the filein which the report is saved. If an extension is provided,
it is used; otherwise the default extension of .REP is appended to thefile
name.

If adrive and/or path is not provided, the current directory is assumed.

If savePaths contains atrue value (1), report4save includes the drive
and path for each file referenced in the report within the report file. If
savePaths contains afalse value (0), only the file names are saved within
the report.

The report was successfully saved to the specified file.
Error. REPORT4 report was invaid, or the specified file could not be

reportdretrieve

Appendix F: Basic/Pascal APl 265

repo rt4separator
VB Usage: rc% = reportdseparator(REPORT4&, separator$)
Delphi Usage: Function reportdseparator (r4 : REPORTA4; separator : Char) : Integer;
Description: This function specifies the character to be used as the separator between
hundreds and thousands, between thousands and millions, etc.

Parameters:

(vb/delphi)
REPORT/r4 ThisisaREPORT4 pointer to the report for which the numeric separator is

separator

Returns:
0
<0

specified.

This is the character used as a numeric separator. If no numeric separator is
desired, pass anull string (*”) for separator.

If thisfunction is not called, acomma. (*,’) is used as the default numeric
separator.

The numeric separator was successfully set.
Error. REPORT4 was invaid.

report4sortSet

VB Usage:
Delphi Usage:

Description:

Parameters:
(vb/del phi)

REPORT4/r4

sortExpr

Returns:
0

<0

See Also:

rc% = report4sortSet(REPORT4&, sortExpr$)
Function report4sortSet (r4 : REPORT4; sortExpr : PChar) : Integer;

This function specifies the sorted order in which the composite records of
the report are retrieved.

|This function overwrites any sort expression set with relate4sort_set.

Thisisa REPORTA4 pointer to the report for which the sorted order applies.

Thisis a string which contains the dBA SE expression used to sort the
composite datafile. Thisexpression may evaluate to a Character, Date, or
Numeric value.

Field names in the query expression must use the data file qualifier. "DBF-
>NAME='SMITH' " is an example of a valid query expression.

Success.
Error or REPORT4 was invalid.

relatedsortSet, reportdquerySet

266 CodeReporter

i

report4toScreen
VB Usage: rc% = report4toScreen(REPORT4&, toScreen%)
Delphi Usage: Function report4toScreen (r4 : REPORT4; toScreen : Integer) : Integer;
Description: Thisfunction is used to indicate whether report4do should create a window

Parameters:
(vb/del phi)

REPORT4/r4

toScreen

Returns:
>=0

<0

See Also:

and send the report output to it, or instead send the report to selected printer.

The default action for report4do isto send the report output to a window.

Thisisa REPORTA4 pointer to the report that is to be outputted.

This parameter specifies where the report output should go. toScreen may
have one of the following values:

1 A window is created and report output is sent to the window.

0 Report output is sent to the selected printer.

The previous toScreen setting is returned.
Error. REPORT4 or toScreen isinvalid.

reportd4output, reportddo

Appendix G: Launch Utilities 267

Appendix G: Launch Utilities

Windows

CodeReporter ships with utility programs which may be used to output
CodeReporter report files outside of CodeReporter. These utilities are
described below.

CodeReporter provides a Windows utility program which may be used to
output CodeReporter report files. This program, called LAUNCH_W.EXE,
is aMicrosoft Windows executable that can be used to quickly view or print
reports from Windows without loading CodeReporter. LAUNCH_W has an
interactive interface as well as a command line interface for easy use in icons.

The source code, LAUNCH_W.C, is provided as an added example of using
CodeReporter report files and the report functions under Windows.

Launch Options |
Load Report
Current Report: DAWORKI\LAUNCHA\TUT1.REP
Display
Query Expression: |CDMF‘ANY—>CDMF‘NAME > 'S5EQ | E
Print
Sort Expression: |CﬂMPﬁNY—>CGMPNﬁME | E

Destination Data File: |

Selected Printer: HP LaserJet 4/4M on LPTI: o Data Eile

| Printer Setup

Exit

When LAUNCH_W is executed without command line parameters, the
"Launch Options' dialog isinvoked with all controls but the "L oad Report"
and "Exit" buttons disabled. Use"Load Report” to invoke the " Specify
Report” dialog and select areport file, or choose "Exit" to end the
application. The "Launch Options' dialog is used to determine the
destination of the report, and set the sort and/or query expressions.

268 CodeReporter

Load Report

Display

Print

Printer Setup

To DataFile

Sort Expression

If the current report was loaded in error, or if another report isto be
outputted, use the "Load Report" button to invoke the " Select Report"
dialog. Usethisdiaog to locate and open anew report file. When the
"Launch Options' dialog returns, the new report is loaded.

Clicking on the "Display" button outputs the report to awindow. The page
size of the window is set to that of the currently selected printer, and so it
may be necessary to use the scroll barsto view the entire page of the report.

Clicking on the "Print" button causes the launch utility to print the report to
the currently selected printer. During the printing of the report, adialogis
displayed to indicate the report is being printed. The "Cancel” button of this
dialog may be used to stop the printing of the report.

If the report is not to be outputted to the Windows default printer, or if the
printer's settings must be modified, the "Printer Setup” button may be used to
invoke the "Print Setup" common dialog. Thisis used to specify a printer to
which the report is outputted, and to configure it.

If the report file includes an output data file template definition (made with
REPORT | OUTPUT FILE TEMPLATE), the "To Data File" button will be enabled.
Selecting this button causes the report to be directed to the data file specified
in the "Destination Data File" edit control. If the report does not include a
data file template definition, the "To Data File" button is disabled and the
report can not be outputted to a datafile.

The report launch utility also provides the ability to modify the sort and query
expressions that are saved in the report. A change in the contents of the "Sort
Query Expression” and/or "Query Expression” edit controlsis reflected in the
output of the report.

For more information on sorting and querying a report, see the
"Relational Reporting” chapter.

Once the report is outputted, the launch utility returnsto this dialog.

Command Line

Usage:

name

-d{ name}

LAUNCH_W accepts command line parameters which may be used to
automate the load and display process. These parameters may be added to
the LAUNCH_W Properties or specified in the Program Manager's File | Run
option. See the Windows User's Guide for more information about using
command line parameters with Windows applications.

LAUNCH W[{name} [-c{expr}] [-s{expr}] [[-v|-p]
| [{ -d{name}} [-o{expr}][-s{expr}]] [...]]]
Thisisthe name of the first report to be outputted or loaded.

If subsequent reports are to be outputted, they may be specified using the -d
option. This option may be considered as a separator between reports.

Appendix G: Launch Utilities 269

-fexpr} Change the default query expression. Query expressions must be entered in
double quotes (). For example:

LAUNCH_W SAMPLE.REP -q “DBF->FIELDNAME > 'LINCOLN"
String literals, such as 'Lincoln', above, must be entered in single quotes (').

-s{expr} Change the default sort expression. Sort expressions must be entered in
double quotes (). For example:

LAUNCH_W SAMPLE.REP -s “DBF->FIELDNAME"
String literals, such as 'Lincoln', above, must be entered in single quotes (').

-v The-v option automatically displays the specified report to the monitor.

-p The-p option automatically prints the report to the Windows default printer.
When either of these optionsis specified, LAUNCH_W isinvoked
minimized.

If neither option is specified, the specified report isloaded, and the "Launch
Options' dialog isinvoked -- only thefirst report is loaded.

Both -p and -v may not be specified. This setting affects all loaded reports.

Non-Windows

CodeReporter also provides a set of non-Windows versions of the launch
utility. In the stand-alone configuration of CodeBase, three different version
are installed—one to support each supported file formats (FoxPro, dBASE
IV and Clipper).

In the client/server configuration—where index format is determined on the
server-side—there are two utilities provided, one for IPX/SPX
communications and the other for TCP/IP communications. These utility can
be used for accessing whichever file format the server is presently supporting.
When launching reports, keep in mind that the report’ s data files must be
accessible by the database server.

All of these programs are DOS executables that can be used to quickly view
or print reports from a DOS command line or batch file.

The source code for these various configurations of the launch utility is
supplied in LAUNCH_D.C, and is provided as an added example of using the
report functions, and as away to use LAUNCH_D under other operating
systems, or with different configuration switches.

The non-Windows launch utility cannot access Windows-specific styles, so
reports outputted with CodeReporter will be different than those outputted with
this utility.

Sizes of group headers and footers -- as well as the title, summary, page header
and page footer -- are rounded to the nearest 1/6th of an inch (12 points), since a
line on most printers is 1/6th of an inch high.

270 CodeReporter

File Names

Usage:

Options:
-0 expr}

-s{expr}

-x{ nn}

-y{nn}

The pre-compiled versions of the launch utility (installed in the \LAUNCH
directory) are named as follows:

Name Compatibility
LNCH_FOX* FoxPro 2.0 (or higher) (.CDX)
LNCH MDX* dBASE IV (.MDX only)
LNCH_CLI* Clipper (.NTX)
LNCH_SPXt Server's File Format - IPX/SPX 16-Bit
LNCH_SKft Server’s File Format - TCP/IP 32-Bit

* stand-alone
t client/server

As aconvention, this manual lists the launch utility name as LAUNCH_D

LAUNCH_D {name} [-g{expr}] [-s{expr}] [-x{nn}] [-y{nn}] [-p[dest] | -
f[dataName] [-t]

Change the default query expression. Query expressions must be entered in
double quotes (). For example:

LAUNCH_D SAMPLE.REP -q “DBF->FIELDNAME > 'LINCOLN"
String literals, such as 'Lincoln', above, must be entered in single quotes (').

Change the default sort expression. Sort expressions must be entered in
double quotes (). For example:

LAUNCH_D SAMPLE.REP -s “DBF->FIELDNAME"
String literals, such as 'Lincoln', above, must be entered in single quotes (').

Change the default horizontal size of the page (in characters). The default
number of characters per lineis 80. For example:

LAUNCH_D SAMPLE.REP -y70

Change the default vertical size of the page (in lines). The default number of
linesis 25. The most common printer page size is 66. For example:

LAUNCH_D SAMPLE.REP -y66

Appendix G: Launch Utilities 271

-p[dest] Change the default print destination. Reports by default go to the monitor.
Specifying the -p option aone sends output to 'standard print’. If a character
string is specified, output is directed to afile with the provided name. For
example:

LAUNCH_D SAMPLE.REP -p <== Qutput goes to 'standard print'
LAUNCH_D SAMPLE.REP -pSAMPLE.OUT <== Output goesto file
LAUNCH_D SAMPLE.REP -pLPT2 <== Output goesto LPT2 port

This option may not be used with the -f option.

-f[dataName] Specify that report output should be sent to adatafile. This option only
appliesif the report has a data file template saved within it. If dataName s
not specified, the report is outputted to the data file name saved in the report.
If dataName is specified, a datafile is created with its name and the report
output is stored within it.

-t Usethe non-Windows printer codes stored in the report file's styles. By
default, LAUNCH_D does not send the printer codes.

