
The Report Writer for C/C++, Visual Basic & Delphi Developers

dBASE Compatible

FoxPro Compatible

Clipper Compatible

Sequiter Software Inc.

CodeReporter 2.0CodeReporter 2.0 TM

CodeReporter 2.0

© Copyright Sequiter Software Inc., 1988-1995. All rights reserved.
No part of this publication may be reproduced, or transmitted in any form or by any means without the written permission
of Sequiter Software Inc. The software described by this publication is furnished under a license agreement, and may be
used or copied only in accordance with the terms of that agreement.

The manual and associated software is sold with no warranties, either express or implied regarding its merchantability or
fitness for any particular purpose. The information in this manual is subject to change without notice and does not
represent a commitment on the part of Sequiter Software Inc.

CodeBaseTM, and CodeReporterTM are trademarks of Sequiter Software Inc.

Borland C++® and Turbo C++® are registered trademarks of Borland International.® are r

Clipper ® is a registered trademark of Computer Associates.

dBASE ® is a registered trademark of Borland International.

FoxPro ® is a registered trademark of Microsoft Corporation.

MetaWare High CTM is a trademark of MetaWare Inc.

Microsoft C ® is a registered trademark of Microsoft Corporation.

Microsoft Windows ® is a registered trademark of Microsoft Corporation.

OS/2 ® is a registered trademark of International Business Machines Corporation.

Contents
Introduction 7

Features... 9

Getting Started 11

System Requirements ... 11
Registration ... 11
Installation... 11
File Formats .. 11

Starting CodeReporter.. 12
Accessing Report Files ... 13

Loading a Report ... 13
Starting a New Report ... 13
Saving a Report ... 13

Manual Conventions... 14
Icons ... 15

Report Design Screen ... 15

Contacting Sequiter 17

Quality Control .. 17
Technical Support .. 17
BBS support .. ERROR! BOOKMARK NOT DEFINED.
Addresses... 18

Tutorials 19

1. Designing a Report 39

Report Purpose .. 39
Prototype on paper ... 40
Analyze the prototype... 42
Finding common report areas.. 43
Locating report elements... 44
Designing the Relation.. 46

Identify the Tags.. 47
Determining Top Master Data File ... 47

Layout the report.. 48
Validate the report.. 48

2. Relational Reporting 49

Relations.. 49
Complex Relations ... 52

Relation Types ... 52
Exact Match Relations... 53
Approximate Match Relations.. 53
Scan Relations ... 55

Master of multiple slaves.. 56
Creating Relations.. 57

Selecting Top Master Data File.. 57
Bit Optimized Query Technology ... 58
The Relation Dialog... 58
Adding a Slave Data File ... 58
Modifying a Relation ... 59

Sorting the Composite Data File ... 62
Sort Expression ... 62

Query the Composite Data File... 63
Relations on Disk ... 64

Saving as Code .. 64
Example... 65

Top Master Data File... 65
Modifying the Relation... 66
Adding a Slave to a Slave .. 67

3. Groups 69

What is a Group? ... 69
Group Expression... 70
Header and Footer .. 73
Creating Groups... 74

Name... 74
Position ... 75

Group Options ... 75
Swap Header and Swap Footer .. 75
Repeat Header ... 77
Reset Page... 78
Reset Page Number.. 78
Hard Reset Page .. 78

Modifying a Group... 78
Deleting a Group.. 78
Selecting a Group... 78
Reset Conditions and Group Printing .. 78

4. Areas 81

Selecting an Area ... 81
Creating an Area .. 82
Deleting an Area .. 82
Modifying an Area ... 82

Sizing an Area ... 82
Allow Page Breaks... 83
Suppressing an Area .. 83

Page Header and Page Footer Areas ... 84

Title and Summary Areas ... 84
Example... 85

5. Output Objects 87

Creating Output Objects... 87
Insert Mode ... 87
Using the Button Bar ... 88
Using the Menu ... 88
Creating Multiple Objects .. 88
Objects within Objects ... 88

Selecting Objects.. 89
Multiple Selection.. 89

Deleting Objects... 90
Moving Objects.. 90

Sensitivity.. 90
Alignment.. 90
Space Horizontal - Vertical .. 91
To Top - Bottom.. 92
Cut, Copy and Paste .. 93

Modifying Objects.. 93
Object Settings .. 94

Sizing... 96
Word Wrap.. 97
Look Ahead.. 97

Example .. 99
Numbers ...101

Numeric Types ...102
Negative Numbers ..102
Leading Zero ..102
Display Zero...103
Decimals ..103

Dates ..103
Date Pictures ..104
Default Date Format ...104

Display Once ..105
Text Objects..106
Lines and Frames ..106

Lines ..106
Frames ...107
Color ..107
Objects Within..108

Graphics ...108
Creating a Graphic Object...109
Scaling Graphic Objects..110

Fields..111
Placement ...111
Memo Fields...113

Expressions...113

Creating..113
Calculations ..113

Creating Calculations..114
Deleting Calculations..115
Calculation Objects...115

Totals ...115
Creating a Total..116
Types ...117
Reset Expression ..118
Deleting a Total ..119
Look Ahead Totals ...119
Conditional Totals ..119

6. Columnar Report Wizard 122

Invoking Report Wizard ..122
Creating a Report ..123

Adding Fields ...123
Subtotals ..123
Sorting and Querying..124

Example..124

7. Expressions 126

General dBASE Expression Information ..126
Field Name Qualifier ..127

dBASE Expression Constants..127
dBASE Expression Operators..127

Precedence..128
Easy Expression Entry ..130

Easy Expression Entry Dialog...130
Using Easy Expression..131

8. Styles 133

Why Styles..133
Creating Styles...134
Deleting a Style...135
Modifying a Style..135
Selecting a Style..136

For an Object..136
Non-Windows Styles...136

Specifying Styles ..137
Example..139

9. CodeReporter Options 141

View Options ..141
Report Preferences ..142

Display Units..142
View Page Size ...143

10. Customizing Reports 144

Margins and Page Size ..144
Margins..144
Page Width...145
Orientation ...145

Report Preferences ..145
Numeric Format ...146
Date Format ...147
Path Names ..148
Hard Reset..148
Page Break After Title ..148
Report Caption ...149

11. Printing 151

Selecting a Printer ...151
To the Screen ..152
To a Printer...152
To a File ...153

Print vs. View...153
To a Database File ..154

Objects ...155
Record Output Group ...156
Output Data File...156
Print to Datafile ..156
Example ...156

12. Function Reference 158

Report Module Names...158
Saving As Code...159
Using Report Functions ...161

Using a Report File...161
Using Generated Code...164

Creating a Report from Scratch ...166
Custom Output Drivers ...167

Using the Custom Driver Shell ..169

Appendix A: dBASE Functions 236

Appendix B: Keyboard Interface 239

Appendix C: Cursors 244

Appendix D: ASCII Chart - Partial 246

Appendix E: Error Codes 248

Appendix F: Basic/Pascal API 250

Appendix G: Launch Utilities 264

Introduction 9

Introduction
CodeReporter is a comprehensive relational report designer that takes the
painstaking work out of creating custom reports.

Use CodeReporter to design intricate reports visually using simple point-and-click
commands. The report data can come from any data file in any directory on any
drive or network drive. The ties between the data files used in the report are made
using simple dBASE expressions. Use only a portion of the data files by creating
a query -- again using a simple logical dBASE expression. CodeReporter takes
care of the complexities.

The speed of the Sequiter Software's Query Technology is clearly evident in all
aspects of CodeReporter. Sort, query, and relate at unmatched speed.
CodeReporter can query a 500,000 record data file and begin output in just one
second.

Reports designed using CodeReporter under Windows are portable and
configurable. Use the same report in any application by loading a report file or by
generating source code that can be linked directly into DOS, OS/2, UNIX , and/or
Windows applications. Once the report structures are obtained (hard or soft
coded), the CodeReporter API functions may modify them to create a truly custom
solution.

CodeReporter takes advantage of Windows display and printer drivers when
outputting reports. Any part of the report can be made to look unique by changing
the size, typeface, and/or color. Using the Windows standard and TrueType fonts,
a report will look exactly the same on the printer as it does in the screen preview.

These features and more, make CodeReporter an indispensable tool for any
software designer or end user!

Features
CodeReporter integrates the powerful features of many DOS-based report
writers with the added benefits of Windows and Sequiter Software's high
performance database capabilities.

Relations Relate any number of data files using any one of the following techniques:

• One to One. Have a direct correspondence between the data files.

• One to Many. Have a unique search value from one data file retrieve
multiple records in a related file.

• Many to Many. Have any number of duplicate search values from one
data file retrieve multiple records in a related file.

The relations may be joined together in any combination, so that relations such
as a one to one to many to many to one are completely supported.

10 CodeReporter

Queries Limit the scope of the records used in a report using simple or complex
dBASE expressions involving fields from any data file used in the relation.
For instance if data file 'A' is related to data file 'B' which in turn is related to
data file 'C', and 'C' contains a value that shouldn't be used in the report, an
expression such as C->FIELD_NAME<>'VALUE' could be used.

Totals Numeric information in a report is often most useful in a summarized format.
Long columns of numbers mean very little until the 'bottom line' is seen.
CodeReporter can summarize numerical data in a number of ways:

• Sum. Maintain a numerical sum of a group of numbers.

• Highest/Lowest. Store the largest or smallest numeric value encountered.

• Average. Maintain the mean value.

Look Ahead Totals may also be set as "look ahead" totals. This lets a total skip ahead of
the actual report output and continue its accumulation -- so that when it is
outputted, it displays the sum of information in the report before that
information is displayed. This total can then, for example, be used in
calculations later in the report to display a percentage of the total.

Fonts CodeReporter makes full use of the fonts available under Windows, including
TrueType fonts. Use any number of typefaces, sizes and colors in a report,
simply by creating a style. If Windows can display a font, it can be used in a
report.

Cut and Paste Move any output object in the report with familiar click-and-drag mouse
commands. Familiar cut and paste commands can also be used to make
multiple copies of output objects.

Display to Screen Save paper when designing a report by sending test output to the screen.
Since CodeReporter uses Windows fonts, the fonts appear the same on paper
as on the screen.

Save as Code Once a report is designed using CodeReporter, save it in a soft coded report
file for the next CodeReporter session, or save it as C source code. The
generated code can then be included in any CodeBase C/C++ application
under DOS, Windows or OS/2.

Graphics Customize reports with pictures! Either place static graphic elements such as
a company logo, or load graphic elements on-the-fly as the report is running.

Print to a DataFile CodeReporter 2.0 includes the ability to output a report to a data file. This
new feature lets a user do a report based on the contents of a previous report,
or use CodeReporter as a data transformation tool.

Distribution Application developers may purchase additional copies of CodeReporter at
bulk rates and resell them to their end users. Contact Sequiter Software Inc.
for further details.

Getting Started 11

Getting Started

System Requirements
The reports created with CodeReporter and the report functions may be used under any
platform. CodeReporter itself, however, must be run under Windows NT or ‘95/’98.

CodeReporter requires a Windows-compatible mouse.

Recommended The following configuration is a suggested minimum to make full use of CodeReporter:

• IBM 386 or true compatible processor running at 25 MHz or higher

• 4MB RAM or more

• Windows-compatible SVGA color monitor

• A two-button Windows-compatible mouse

• A hard drive with at least 1.6 MB free space for each version of CodeReporter
installed. (Depending upon the report, additional space may be required during its
execution.)

CodeReporter runs under almost any configuration that runs Windows, however, the more
the powerful computer, the faster the reports will be generated.

Registration
Please take a moment to complete and mail in your CodeReporter registration card.
Doing so assures you of quick technical support and notification of upgrades.

Installation
When purchased in a bundle with other Sequiter products (such as CodeBase 6),
CodeReporter may be installed through the bundled package's installation program .
When purchased separately, CodeReporter may be installed by executing the
INSTALL.EXE program on the CodeReporter #1 disk.

File Formats
CodeReporter relies on the CodeBase database engine for opening the data, index and
memo files used in the creation and display of reports. Therefore, CodeReporter can be
used with any of the file formats supported by CodeBase. Presently this includes FoxPro,
dBASE IV and Clipper formats. During the installation program, the general file format

12 CodeReporter

option that you select is used to install the necessary CodeReporter files needed to support
that format.

CodeReporter supports the following index file formats:

• dBASE IV indexes (.MDX). When using this compatibility it is not possible to
access the dBASE III PLUS indexes (.NDX) even though dBASE IV may access
both.

• FoxPro 2.5 (and higher) compact indexes (.CDX). CodeReporter does not support
earlier, non-compact versions of FoxPro indexes.

• Clipper indexes (.NTX). CodeReporter works with both Clipper Summer '87 and
Clipper 5.x.

Starting CodeReporter
CodeReporter is a 32-bit Microsoft Windows application --to run it you need Windows
NT or Windows ‘95/’98. By default, the CodeReporter executable CREP2.EXE, and its
support files, are installed in the C:\CODEBASE\CODEREP sub-directory.

To run the application, locate the CodeReporter program using File Manager (Windows
NT) or the Windows Explorer (Windows ‘95/’98). Double-clicking on the CodeReporter
program item icon will launch the application.

You can also set up permanent program item icons (Windows NT) or program shortcuts
(Windows ‘95/’98) to make it easier to launch CodeReporter. Refer to your Windows
user’s guide for more information.

Command-line Arguments

CodeReporter can accept a single command line argument which represents the name of a
previously saved CodeReporter report file. CodeReporter will attempt to load the report
and any data files associated with it.

Command-line arguments can be associated with permanent program item icons and
shortcuts. In addition, under Window ‘95/’98 and NT, command line arguments can be
specified by invoking CodeReporter from the command line of a DOS window. For
example:

c:\codebase\coderep> crep2 myfile.rep

Getting Started 13

Accessing Report Files
Reports created with CodeReporter may be saved in CodeReporter report files, which
have a ".REP" extension. These report files contain all the specific information of the
report--including the path to the data files in the report's relation and the styles used in the
report.

Loading a Report
A previously created report may be retrieved by selecting the FILE | OPEN menu option.
Use the "File Open" common dialog to locate the desired report file and select the "OK"
button.

If an attempt is made to load a report file when one is already loaded, CodeReporter
closes the current report.

FILE / OPEN WITH PATH may also be used to open a report file. In addition to
prompting for the name of the file, the FILE / OPEN WITH PATH menu option prompts
for the directory in which the data files of the report may be found.

Use FILE | OPEN WITH PATH when the data files for a report have been moved to another
directory.

1.0 Files CodeReporter version 1.0 files may be imported into CodeReporter 2.0 using the
FILE | OPEN OLD FILE menu option.

Starting a New Report
A new report may be created by selecting the FILE | NEW menu option. This closes the
current report and invokes the "File Open" common dialog so that the top master data file
may be selected.

CodeReporter automatically creates and displays a new group named "BODY" in the new
report. The file name for the new report is specified when the file is saved.

Saving a Report
The FILE | SAVE menu option causes CodeReporter to save to disk the changes that have
been made to a report. If a report has not previously been saved (i.e. a new report),
CodeReporter uses the "File Open" common dialog to obtain the report's file name.

With a New Name

A report may be saved under a new name using the FILE | SAVE AS menu option. This
causes CodeReporter to prompt for a new file name in the same manner as if the report
were a new report.

14 CodeReporter

Manual Conventions

Listed below are the typographic conventions used within this manual.

Menu options are listed in a bold, small capital letter, Arial font. If a sub-menu is listed,
the main menu listing is followed by the '|' character and the sub-menu listing. In addition,
the words "menu option" generally follow the name of the menu.

Example: Choose the File | New menu option.

The names of dialog boxes are encased in double quotation marks and use
the manual's regular font. In addition, the words "dialog" or "dialog box"
generally follow the name of the dialog.

Example: Use the "Easy Expression" dialog box to enter dBASE expressions.

The names of controls within a dialog box or within the CodeReporter
design screen are encased in double quotation marks and listed in the
manual's regular font. In addition, the type of control is generally listed
after the name of the control.

Example: Choose an entry in the "Fields" list box and select the "OK" button.

dBASE expressions are in a typewriter font, and are generally in upper case
(the only exception is with literal text that is included in a dBASE
expression). Fields referenced within a dBASE expression are qualified
with the name of the data file to which they belong and a '->'. See the
Expressions chapter for information about dBASE expressions.

Example: 'Name: '+ DATA->NAME+'Age: '+STR(DATA->AGE,3,0)

All directories listed within this manual are assumed to be subdirectories of
the CodeReporter directory (default: C:\CODEREP). When subdirectories
are listed, the CodeReporter directory is listed as '.\', which means "this
directory." Therefore, the .\EXAMPLES directory is the same as the
C:\CODEREP\EXAMPLES directory.

Getting Started 15

Icons
At various points throughout this manual, the following icons are used to bring attention
to important information.

This icon indicates that the particular function only relates to Microsoft
Windows applications. This is only available if the report module functions
have been compiled with the S4WINDOWS switch. This icon incorporates
an image copyrighted by Microsoft Corporation.
This icon indicates that the particular function may not be applied to
Microsoft Windows applications. This icon incorporates an image copyrighted
by Microsoft Corporation.

Report Design Screen
At various points, this manual makes reference to elements within the CodeReporter
design screen. These elements are illustrated in Figure 1, on the next page.

Figure 1 Report Design Screen

Menu
Bar

Button
Bar

Ruler

Info
Windows

Output
Object

Areas

Status
Bar

Sizing
Handles

Style
Popup
Button

Contacting Sequiter 17

Contacting Sequiter
If you have a comment or question about this product, or any one of Sequiter's products,
please feel free to contact us by phone, e-mail, fax, or mail. Your comments and
questions are very important to us.

Quality Control
If you are not completely satisfied with product quality or our service, please ask for or
address your comments to "Quality Control".

Technical Support
In order to help us serve you better, you must be able to provide the following information
to the Technical Support Representative:

1. Your name, phone number, fax number, and the name of your company.

2. The fact that you are using CodeReporter 2.0.

3. Your CodeReporter serial number. This is either on your CodeReporter diskettes or
the inside front cover of the CodeBase Reference Guide.

4. Your operating system and its exact version.

5. The file compatibility of the CodeReporter version you are using (FoxPro, dBASE
IV, Clipper).

6. The date of the files on your CodeReporter diskette. Periodically Sequiter may issue
maintenance releases. In this case, the exact maintenance release you are using can
be determined by performing a directory listing on the CodeReporter diskette files and
checking the date stamp of the files.

7. The file size of the CodeReporter executable file being used.

If you wish to submit a report which is not working properly in order that Sequiter
can test it, you need to provide the above information and also do the following:

a. E-mail the report to us or send a copy on diskette by mail or courier. It is imperative
that the data, index and memo files used in the report be included also.

b. Save the report file without path names (See the Path Names section of the
Customizing Reports chapter for information on how to do this).

c. Provide in written or electronic form all the information listed above in 1-7.

d. Specify exactly what the problem is.

We are here to help and will do our best to provide high quality service.

18 CodeReporter

Addresses
Listed below are the Sequiter Software Inc. contact information. Please visit our web site
for additional ways of contacting Sequiter Software Inc.

Sequiter Software Inc.
 P.O. Box 783
 Greenland, NH, USA
 03840

Voice: (403) 437-2410
Fax: (403) 436-2999
E-mail: info@sequiter.com
http://www.sequiter.com/

Sequiter Software Inc.
 112 Powis Street
 London, UK
 SE18 6LU

Voice: (44) (181) 316 5001
Fax: (44) (181) 316 6001
Error! Bookmark not defined.

Newsgroups: comp.databases.xbase.codebase

Tutorials 19

Tutorials
This chapter of the manual is used to quickly familiarize CodeReporter 2.0
users with some of the basic procedures used in creating reports. After going
through the tutorials listed in this chapter, a user of CodeReporter 2.0 will be
able to:

• Open existing report files with and without paths

• Create new reports from scratch

• Place text, expression, and calculation output objects

• Create and place total output objects

• Create report areas and size them in two ways

• Create a relation manually and load one from disk

• Preview a report

• Use "Swap Header" and "Swap Footer" options

Additional examples of using some of the special features of CodeReporter
2.0 may be found near the end of the following chapters: Relational
Reporting, Areas, Output Objects, Columnar Report Wizard, Styles, and
Printing. Use the Index to locate the exact pages.

Loading a Report with Paths
This first tutorial describes the steps necessary to load two different reports
locate their data files in different manners.

Opening in Current Directory
The first sample report, TUT1.REP simply lists out the contents of the
COMPANY.DBF data file.

When this report file was saved, the drive and directory for the data file was
not saved within it (See the CodeReporter Options chapter for information on
how to do this). The data files for the report are then assumed to be in the
same directory as the report file. The advantage in this is that the report and
data files may be moved to any drive and any directory as long as they are
moved together.

Invoke CodeReporter in one of the ways described in the Getting Started
section of this manual. Once it is running, use the FILE | OPEN menu option
to invoke the "Select Report File" dialog. Use the drives and directories list
boxes to navigate to the .\EXAMPLES directory. Once there, select the
TUT1.REP report file and select the "OK" button. The report is loaded from
the current directory.

20 CodeReporter

Opening With a Path
TUT2.REP is just the opposite of TUT1.REP. The different drives and paths
for the COMPANY.DBF and STORES.DBF data files are saved within the
report.

An attempt to open this report with FILE | OPEN will result in CodeReporter
warning that the file could not be found and asking if an alternate file should
be substituted for each file that could not be found. This is useful when the
file names or directories of the data files within the report have changed -- but
manually changing each and every file can be quite time consuming,
especially if all files are located in the same directory.

The FILE | OPEN WITH PATH menu option overrides the drives and paths stored
within the report file and replaces them all with the drive and path provided
by the report's designer. Use FILE | OPEN WITH PATH to open the TUT2.REP
file and specify the CodeReporter examples directory: .\EXAMPLES.

Creating a Database List
This next tutorial shows the steps necessary to create a simple report that
lists the contents of the COMPANY.DBF data file. This data file, which
contains the fields COMPID, COMPNAME, and CEO, is located in the
CodeReporter examples directory: .\EXAMPLES.

Figure 2 Completed tutorial three report

Tutorials 21

Start a new Report
Select the FILE | NEW menu option once CodeReporter is running. This
removes any currently loaded report and prompts for the first data file of the
report (the top master data file). Since the report is to list the contents of the
COMPANY.DBF data file, navigate to the CodeReporter examples directory,
select COMPANY.DBF and then the "OK" button.

Once this initial setup is completed, CodeReporter displays a blank report
design screen. A default group, "Body" is created with one header area in
which output objects may be placed.

A sample sketch report would demonstrate that the report only requires one
area of the report which repeats for each new composite record.
CodeReporter automatically creates this area for each new report, so no new
areas need be created. (For information on "areas" and "groups" see the
Areas and Groups chapters).

Place repeating elements
The default area should contain fields from the top master data file whose
values change with each new composite record. To put CodeReporter into
insertion mode so that these fields may be placed within the "Body" area,
click on the "Field" button on the button bar. Doing so invokes the "Field
Objects" floating list box (Figure 3, below) which contains all of the fields in
the composite data file.

Figure 3 Field objects list box

Use the mouse or the keyboard to select all the fields in the list box, just like
normal Windows list boxes (press and hold the left mouse button and drag it
over all three fields).

Once the desired fields are selected, position the mouse cursor over the
"Body" group's header area. Do not select the "Done" button at this point.
Notice that the cursor changes from an arrow to a field insertion cursor (See

22 CodeReporter

Appendix C for all cursors). This indicates that the next click of the left
mouse button establishes the point where the upper left corner of the fields
are placed.

Position the cross hairs of the field insertion cursor at the left side of the
"Body" area and press the left mouse button. This invokes the "Field Layout"
dialog. Since the default settings are fine, select the "OK" button to complete
the field placement. The report design screen now looks like Figure 4.

Figure 4 Partially designed tutorial three report

Preview Report
At this point, the report design may be considered finished. It has successfully fulfilled its

requirements, namely, to output the contents of the COMPANY.DBF data file. Use the FILE |
PRINT PREVIEW menu option to view the report. As seen in Figure 5, this report is remarkably
bland and relatively obscure. Unless the reader of the report is very familiar with the contents and
layout of all the data files accessible, it is impossible to know exactly what this report is
displaying.

Tutorials 23

Figure 5 Partial tutorial three output

Adding Explanatory Areas
The most obvious addition to help explain the report would be a title like
"Contents of COMPANY.DBF". However, placing this title in the "Body"
group's header area is not appropriate, since it would be repeated for every
record in the composite data file.

Title Area A title for the report is properly placed within the title report area. Report
elements in the title area are outputted at the top of the first page before any
other output area's objects, including the page header area. As such, this
area may be used as a "cover page" for the report. To create a title area,
choose the AREA | NEW TITLE AREA from the menu. The new report area is
created.

The title "Contents of COMPANY.DBF" or any other appropriate title is
considered static text. Once put in the report, its value is set.
CodeReporter is put into insertion mode for static text by pressing the
"Text" button on the button bar, or by choosing the OBJECT | TEXT menu
option. Notice the mouse cursor changes to the Text Insertion cursor to
indicate the position of the text output object.

Place the mouse cursor within the newly created title area and click the left
mouse button. This specifies the upper left corner of the output object's
text. When the new text object is placed, the "Enter Text for Text Object"
dialog is invoked so that the text for the text object may be entered.

Enter "Company List" or some other descriptive string and choose the "OK"
button to complete the object creation. The newly created output object, to
be visually appealing, should be horizontally centered within the report
design screen. To do this, use the mouse to manually drag the text output
object to the approximate center of the area, or choose the ALIGN | CENTER

menu option.

24 CodeReporter

Page Header These new additions to the report describe what the report is and when it is
completed, however it doesn't identify what each of the report's columns are.
Following the steps above, static text objects could be placed beside each of
the field output objects to identify the field, but this would also cause needless
duplication within the final output.

What this report needs are column titles -- static text objects placed at the top
of each column that contain the name of the field. If the report crosses a new
page, these column titles should also be reprinted at the top of the new one.

A report area that is outputted at the top of each page is the Page Header
area. Each page, with the exception of the first page (if there is a title area),
begins with the page header area, no matter what the contents of the
composite data file.

A Page Header report area may be created by using the AREA | NEW PAGE
HEADER AREA menu option. A report area with a default size of .33 inches
is created. Within this area, place the following text output objects:

• ID

• COMPNAME

• CEO

and manually move them into position above their respective field objects.
When finished, choose the "None" button on the button bar (or the ESC key)
to move CodeReporter out of insertion mode.

The report design screen should now look very similar to the one shown in
Figure 2 and the previewed output should look like Figure 6, below.

There are two items worth mentioning about this output—the first, is that the
Title Area string ‘Company List’ appears on the same page as the records in
the report. This is achieved by setting the REPORT | PREFERENCES - PAGE

BREAK AFTER TITLE checkbox off. Be default the Title Area is displayed on its
own separate page.

The second item worth noting, is that the last character of the CEO field
output appears to be only partially outputted for some of the records. This is
a result of CodeReporter's estimation of the size of the output object based on
the font's average character width. The estimation using average character
width may be off a little bit when capital letters -- which may be wider than
the average width -- are found in the field.

Tutorials 25

Figure 6 Completed tutorial two report

To fully display all of the field, select the CEO field by clicking the object
with the left mouse button. Notice that when selected, eight little black
squares appear on the object. These are sizing handles, which may be used to
change the space used to output the object. Click and hold the left mouse
button on one of the right sizing handles and drag it to the right about an
1/8th of an inch. When the sizing handle is released, the CEO output object
is resized to the new width and when the object is outputted, the entire
contents of the CEO field is displayed.

Statement of Accounts Report
The following tutorial brings together many of the complex features of
CodeReporter 2.0 into a single invoice report. The completed report design
screen is shown in Figure 7.

Load the Relation
This tutorial uses a relation saved in the TUT3xxx.REL relation file. This
relation file contains the relation for the two data files used in this report:
INVOICES.DBF and CUST.DBF. When a relation file is loaded, all
previously used data files are closed, and the new files in the relation are
opened and used.

Loading a relation saves time by quickly retrieving an often used relation
from disk instead of manually building the same relation for several reports.

While CodeReporter is running, use the FILE | LOAD RELATION menu option to
load the relation file. Since relation files are index file specific, load the
appropriate version of the relation file as listed in Table 1, below. If the

26 CodeReporter

index file version of CodeReporter is unknown, use the HELP | ABOUT menu
option.

Relation File Name Index Compatibility

TUT3FOX.REL FoxPro

TUT3MDX.REL dBASE IV

TUT3CLI.REL Clipper

Table 1 Relation file compatibility

Figure 7 Tutorial 4 completed report screen

Add Body Group Fields
After the relation is successfully loaded, CodeReporter initiates a new report
with one group, "Body", containing a single header area. It is within this area
that the repeating fields for the composite data file are outputted.

Place CodeReporter into insertion mode for field output objects by selecting
the "Field" button on the button bar or by selecting the OBJECT | FIELD menu
option. Either method will invoke the "Field Objects" floating list box which
contains the fields of all the data files in the loaded relation.

Select the following fields from the INVOICE.DBF data file within the list
box:

• CREDIT

• DEBIT

• ENTERDATE

Tutorials 27

Move the mouse cursor over the "Body" group's report area and click the
left mouse to place the field objects. The objects are placed in the order in
which they were found within the data file. Select the "Field Objects" dialog
box's "Done" button to remove it from view.

The position of the field output objects must be changed to suit the report.
Use the mouse to drag the ENTERDATE field object to the upper left corner
of the report area. The CREDIT and DEBIT fields may also be moved to
the top of the report area and spaced as seen in Figure 7.

Modify Object Settings
Output objects have many default settings, some of which are not always
applicable. In the case of the ENTERDATE, CREDIT, and DEBIT fields,
this is true. ENTERDATE is displayed in MM/DD/YY format, when it
should be in MMM DD, CCYY format, and both CREDIT and DEBIT
should not be outputted when their values are zero.

Select the ENTERDATE output object and press the Enter key to invoke its
Object Menu. From this menu, select the OBJECT Settings menu option to
invoke the "Object Settings" dialog in which the date format and size of the
object may be modified.

Use the "Date Format" drop down combo box to select the MMM DD,
CCYY format (or manually type it in), and set the "Width" edit control (in
the Size area) to be .75 inches. Selecting the "OK" button makes these two
changes and modifies the object appropriately.

Invoke the "Object Settings" dialog for CREDIT output object using the
above procedures. The "Display Zero" radio button in the lower right portion
of the dialog is enabled. Click on the radio button to disable the display zero
option, and select the "OK" button to close the dialog. Repeat these steps for
the DEBIT output object.

Change the Size of "Body"
Use the FILE | PRINT PREVIEW menu option to view the report. Notice that the
lines of data in the report appear to be double spaced. This is a result of the
"Body" group being its default size of .33 inches, but the font for the output
objects are only approximately .17 inches tall. To eliminate this double
spacing, the height of the report area may be changed to that of the output
objects.

This may be accomplished in two ways, using the report area's sizing
handles, or by directly setting the size using the "Modify Area" dialog. The
former method is discussed here, while the later method is used below for
sizing the "Customer" group header area.

Use the mouse to drag the lower left or right sizing handle for the "Body"
area so that the area is smaller than the three output objects. When the
mouse is released, CodeReporter attempts to make the area smaller than the
report objects, but displays the warning shown in Figure 8.

28 CodeReporter

Figure 8 Area error message

Select the "No" button. This causes CodeReporter to size the area to the
smallest size possible without truncating (and deleting) any output objects.
(See the Areas chapter for more information on sizing the area)Preview the
report again (FILE | PRINT PREVIEW), and notice the lines of the report are now
single spaced.

Add the Customer Group
The report as it stands is not of much use to the casual reader. All that is
listed are some dates and amounts. Without knowing to whom these figures
belong and what they represent, the report does not impart any real
knowledge.

Perhaps the most important information that is needed for this report is an
identification of to whom these credits and debits belong. This is done by
creating a second group for the report using the GROUP | NEW menu option
and placing within this group's areas the information identifying the
customer.

When the new group is created, the "Group Settings" dialog box (Figure 9)
is invoked to allow the report designer the option of changing some of the
default actions of the group.

CodeReporter automatically gives the groups within a report a unique
name. This unique name, however, is not very descriptive of the purpose
of the group. The name of the group may be changed in the "Group
Settings" dialog box by using its "Group Name" edit control. Change the
default group name, Group 2, to be Customer.

Since it is unnecessary for the personal information to be displayed for each
and every credit and debit, a group reset expression is created to output the
areas of the Customer group only when the customer changes. A group reset
expression that uniquely identifies the subset to which each customer belongs
is:
INVOICES->CUSTID

Tutorials 29

Figure 9 Group settings dialog for customer group

Enter this expression within the "Reset Condition" entry window.

Whenever the customer identification number changes, the new credits/debits
should be associated with a different customer. This condition, known as a
group reset condition, causes the Customer group to be outputted.

Notice that no group reset condition was created for the default "Body"
group. This is because without a group reset expression, the "Body" group
resets for each composite record in the data file -- causing the header area for
the group to be outputted for every record.

Also set the "Swap Header", "Swap Footer", and "Reset Page Number" radio
buttons within this dialog. These provided some special handling for the
invoice report. For more information on these settings, see the Groups
chapter.

Select the "OK" button to close the "Group Settings" dialog.

Populate the Customer Header
The customer header area, by virtue of its swap header setting, is outputted at
the top of the page for each new customer. It is therefore necessary to add

30 CodeReporter

the descriptive information for the report as well as for the customer to the
Customer header area.

Create a text output object entitled "STATEMENT OF ACCOUNTS", place
it within the Customer header area and use the ALIGN | CENTER menu option
to center it horizontally.

Before the rest of the descriptive fields are added to the Customer
header area, the size of the area must be modified. This may be
done with the mouse and the area's sizing handles as described
above, or by using the "Modify Area" dialog box.

This dialog is invoked by clicking the right mouse button within an
empty portion of the Customer area (not the group's information
window).

Figure 10 Modify area dialog

Use the "Height" edit control (shown in Figure 10), to set the height of the
Customer group to 1.3 inches and select the "OK" button. The header area is
automatically resized.

The fields describing the customer are added to this new area through the
"Field Objects" floating list box. This is invoked using the "Field" button on
the button bar. Use the scroll bar to move the following fields into view:

• NAME - The customer's name

• ADDRESS - The customer's address

Tutorials 31

• CITYSTZIP - The customer's city, state, and zip code.

These fields may be individually selected and dropped into their positions in
the report as shown in Figure 7, or they may be multiply selected, and
dropped at the same time.

Multiply select the above fields, position the mouse cursor in the Customer
header area and press the left mouse button. This invokes the "Field Layout"
dialog. Instead of automatically selecting the "OK" button as done for the
"Body" group, select the "Vertical" check box. Selecting the "OK" button
this time causes the automatic layout of the three selected fields to be placed
vertically, aligned on the left.

Also place two text objects containing "Credits" and "Debits" on the bottom
of the Customer header area above the CREDIT and DEBIT field objects.

Page Header Area
Use the AREA | NEW PAGE HEADER AREA menu option to create a page header
which is outputted at the top of every page within the report (except where
swapped with the Customer group header). As such this area should be used
to briefly describe the report and tie all the pages together.

Size the area to .5 inches. This area contains four output objects, one field,
two text, and one expression. Use the "Field Objects" floating list box (it
should still be visible) and select and drop the NAME field within the page
header area. Close the "Field Objects" floating list box by selecting its
"Done" button.

Copy and Paste The two text objects created for the Customer header area ("Credit" and
"Debit") may be created manually as done in the customer header and placed
within the page header area.

As an alternate, multiply select the objects in the Customer header and then
use the EDIT | COPY menu option to place a duplicate copy of the objects
within the Windows clipboard. Select EDIT | PASTE, position the mouse
cursor within the page header area and click the left mouse button to place
the copies of the text objects.

The fourth output object, the expression, is used to output the page number of
the report. Select the "Expression" button on the button bar (CodeReporter is
put into insertion mode for expression output objects), position the mouse
cursor over the upper right portion of the page header area and press the left
mouse button. This invokes the "Easy Expression" dialog box in which the
expression for the expression output object may be entered.

Type in the following expression (including the quotation marks):
"Page: "+STR(PAGENO(), 3,0)

This expression, which combines both a string ("Page:") and the numeric page
number ("PAGENO()"), may actually have been represented as two objects; a text
object for "Page:" and a separate expression output object for "PAGENO()".
However, since they are logically related and always are moved and

32 CodeReporter

positioned together, it is convenient to combine them into one expression.
Select the "OK" button to complete the placement of the output object.

End of Invoice Summary
This statement of account lists a total of the credits and debits for each
customer's account. To make it easier for the customers, this statement also
includes a line that indicates whether they owe the company money, or if they
have over paid.

Since a customer can't at the same time owe and have overpaid, these
statements must be placed in mutually exclusive report areas in the customer
summary.

When the Customer group was created, CodeReporter automatically created
a single group footer area. This area is going to be used to output the
customer's total credits/debits. Two additional footer areas (for the "You
Owe Us" and "We Owe You" lines) may be created by using the AREA | NEW

FOOTER AREA menu option twice while the Customer group is the
selected group.

Add the Text Objects Add a text output object to each of the Customer group's footer
areas (See Figure 7)

• Total Credits / Debits

• We Owe You

• You Owe Us

Add the Totals In order to determine who owes money to whom, the total amount
credited and debited to the customer's account must be totaled and
those totals compared. Totals are created through the "Total
Calculations" floating list box which is invoked by selecting the
"Total" button on the button bar. This list box contains the names of
all numeric fields within the composite data file as well as all numeric
calculations. A total output object for the CREDIT field may be
placed by selecting the CREDIT entry in the list box and placing it
within the first footer area of the Customer group. Doing so invokes
the "Modify Total" dialog box (Figure 11) which contains the total's
default values.

Tutorials 33

Figure 11 Modify total dialog

The "Modify Total" has all the appropriate settings (reset expression, total
type) necessary to sum the CREDIT field. The TOTAL0 name, however, does
not truly describe what is being totaled. Change the name TOTAL0 within the
"Total Name" edit control to be CREDIT_TOT and select the "OK" button.

Repeat the above steps to create a total output object in Customer's first
group footer for the DEBIT field, and use DEBIT_TOT as the name for the
total.

Create the The amount owed can be determined (and outputted) using a calculation
Calculations output object that calculates the difference between the CREDIT_TOT total

and the DEBIT_TOT total. This calculation which can (and will) be used in
other dBASE expressions. A calculation output object is created through the
"Calculation Object" dialog box which is invoked using the "Calculation"
button on the button bar. Use the "New Calc" button to invoke the "Create
Calculation" dialog (Figure 12).

34 CodeReporter

Figure 12 Calculation object dialog

The calculation name is used to identify the calculation in other dBASE
expressions. Enter CREDIT_DEBIT in the "Calculation Name" edit control
and the following expression into the "Calculation Expression" edit control:

CREDIT_TOT()-DEBIT_TOT()

Select "OK" to close the "Create Calculation" edit control and return to the
"Calculation Object" dialog. Select the new CREDIT_DEBIT() calculation in
the list box and place it in the second ("We Owe You") Customer group
footer.

When the customer owes the company money, the CREDIT_DEBIT()
calculation contains a negative number. To properly output the third report
area ("You Owe Us") however, this value should be positive. Create an
expression output object in the third ("You Owe Us") Customer footer area
(like the page number above) and enter the following expression:
CREDIT_DEBIT() * -1

This expression evaluates to a positive number in the case where the
customer owes the company money.

Suppressing the footer areas
As it stands now, once the report has completed outputting all the credits and
debits for a customer, the totals for the debits and credits are outputted as
well as a line saying that the company owes them money and that the
customer owes the company money.

Only one of these situations can be correct. The last two areas must be
conditionally suppressed -- a condition based on the value of the
CREDIT_DEBIT()calculation.

A click of the right mouse button on an empty spot in the second footer area
of the Customer group ("We Owe You") invokes the "Modify Area" dialog

Tutorials 35

box. In the "Suppression Condition" edit control, enter the following
expression and select the "OK" button:
CREDIT_DEBIT() <= 0

This indicates that if the credits minus the debits is less than or equal to zero
(the customer owes the company money) the second area ("We Owe You")
should not be outputted. When the company owes the customer money the
CREDIT_DEBIT() calculation returns a positive number and so the report area
is outputted (i.e. not suppressed).

The third area should use the following suppression condition:
CREDIT_DEBIT() > 0

The final step in this tutorial report is to modify the numeric format of the
numeric output objects in the Customer group's footer areas (two totals, a
calculation, and an expression). For each output object, invoke its Object
Menu (right mouse click on the object or pressing the Enter key while
selected) and choose the OBJECT SETTINGS menu option. Change the
following settings:

1. "Number of Decimals" edit control. Change this from the default setting
of zero (0), to two (2).

2. "Numeric Type" radio buttons. Set the output object to be displayed as a
currency.

View the Report
Use the FILE | PRINT PREVIEW menu option to view the pages of the report. The first three should
appear like those in Figure 13.

36 CodeReporter

Figure 13 Preliminary output

Tutorials 37

Specifying a Sort Expression
As it can be seen in the first three pages of the report (Figure 13), the debits
and credits for the first customer, John Q. Public, are broken up by those of
Customer O'Mine. This is because CodeReporter is retrieving the records
from the composite data file in natural order (i.e. the physical order of the
composite data file).

The final step in creating this report is to order the records in the composite
data file according to the customer's id number which is stored in the
CUSTID field.

Use the REPORT | SORT EXPRESSION menu option to invoke the "Easy
Expression" dialog for the sort expression. Enter the following expression
and select the "OK" button:
INVOICES->CUSTID

When the report is displayed a second time, this new sort expression is taken
into account and all of the credits and debits for John Q. Public are retrieved
together before those of Customer O'Mine.

Chapter 1: Designing a Report 39

1. Designing a Report
Designing a report is a three phase cycle. The first phase is figuring out what
the report should contain and look like. The second and third are laying out
the report and obtaining a sample report. If the end product after the third
cycle is the same as what was designed in the first phase, the report cycle is
done. It is more often the case that the implementation cycles of the report
need to be repeated many times until the report is "perfected".

It is even more often the case that the initial concept of what should be in the
report or how it should be organized radically changes once the report is
implemented. This usually occurs as a result of insufficient consultation and
planning prior to the attempt to implement the report.

This chapter discusses an organized approach to the design phase of a report.

Report Purpose
It is important in any report to decide exactly why the report is being
designed. Without a clear idea of why the report is necessary in the first
place, it is quite easy to come up with a nice, new, crisp report that is totally
useless.

If, for example, the Inventory Control department wants to know how many
widgets they need to reorder, and they get a report that tells them how many
widgets were used last year, they'll be quite upset, and the report will need to
be redone.

A Statement of Purpose is a brief description of the requirements of a report.
This is generally a line or two that specifies:

• Who is requesting the report,

• What information is required,

• What are the limitations of the report (eg. between which dates, for
which products, for which location, etc.)

• Any special formatting

It can be as simple as "Personnel needs a list of all people in the
EMPLOYEE data file", or as complex as "The Board of Directors needs a
two year summary of the revenue and expenses for each store of all the
companies in the system -- sorting alphabetically by company and store
name."

40 CodeReporter

Creating this statement of purpose helps clarify the requirements of the
report, and can be used later to verify that the report shows what it was
required to show.

Prototype on paper
Determining how the report should physically look is the second most often
modified aspect of a report after its content. Deciding early how the report
should look will save countless comments like, "That's ok, but I really think
this should be over here" and will greatly accelerate the actual
implementation of the report.

The simplest way to obtain the format of the report is to prototype it quickly
on a piece of paper, filling in sample information. In the prototype, the
placement of information is more important than the accuracy.

Exactly where any piece of information is placed is often a combination of
company policy and personal taste -- so there are no rules. Some companies
like page numbers at the top, while others like them at the bottom. Try out a
couple different types of designs until a good one is found.

The most important aspect of a prototype is that it fully satisfies the
requirements of the Statement of Purpose. If it does not, the design needs to
be revised.

Figure 1.1 shows a prototype report for the following Statement of Purpose:
The Alumni Association needs a report that shows the total amount of
money donated this year and an alphabetical list of the names, addresses,
contributor identity number and monetary amounts of all people who have
contributed $1,000 or more so far this year.

Chapter 1: Designing a Report 41

Alumni Association
Patron's List

January 1, 1993 to May 21, 1993

Total Alumni contributions: $xxxxxxx

Patron Contributor ID Amount

Adams, John

123 West 4th Street, AnyTown, ST, 55212

4321-34-1234 $1,000

Baker, John

123 West 4th Street, AnyTown, ST, 55212

4321-34-1234 $9,000

Cramford, John

123 West 4th Street, AnyTown, ST, 55212

4321-34-1234 $6,000

Denver, John

123 West 4th Street, AnyTown, ST, 55212

4321-34-1234 $6,000

Evans, John

123 West 4th Street, AnyTown, ST, 55212

4321-34-1234 $3,000

Finnigan, John

123 West 4th Street, AnyTown, ST, 55212

4321-34-1234 $15,000

Goodbody, John

123 West 4th Street, AnyTown, ST, 55212

4321-34-1234 $2,000

Hamilton, John

123 West 4th Street, AnyTown, ST, 55212

4321-34-1234 $1,000

Il, John

123 West 4th Street, AnyTown, ST, 55212

4321-34-1234 $5,000

Jorganson, John

123 West 4th Street, AnyTown, ST, 55212

4321-34-1234 $7,000

Figure 1.1 Prototype (Sketch) Report

The prototype report in Figure 1.1 completely satisfies the statement of
purpose. It lists the originator of the report at the top of the report, the total
amount contributed by the alumni in the "Total contributions" line, and the
names, addresses, and contributor identity numbers in alphabetical order.
Once this prototype report has been approved by the originator of the report,
in this case the Alumni Association, the building of the report may begin.

Analyze the prototype
The completed prototype lists all the essential pieces of information that are
required in the report. It would be tempting at this point to move directly into
CodeReporter to implement the report. It is important, however, that

42 CodeReporter

additional planning take place in order to be the most productive when using
CodeReporter.

The first step is to analyze the prototype and determine the type of each
element of the report. Does this piece of the report change during the report?
Can that piece change each time the report is run? Is this amount calculated?
On the prototype report, figure out what the pieces of the report are, and label
them (as in Figure 1.2) with terms similar to:

• Db field. This information comes from a database

• Graphic. This is a picture stored on file. Don't include letter head, etc.
that are not actually outputted by your printer.

• Static text. This is text that does not change within the report.

• Calculated Text/amount. This information combines two or more report
elements total. This information summaries numeric data. lines.

• Special. Elements like the page number, or the current date/time which
don't fit in any other category.

Chapter 1: Designing a Report 43

Alumni Association

Patron's List

January 1, 1993 to May 21, 1993

Total Alumni contributions: $xxxxxxx

Patron Contributor ID Amount

Adams, John

123 West 4th Street, AnyTown, ST, 55212

4321-34-1234 $1,000

Baker, John

123 West 4th Street, AnyTown, ST, 55212

4321-34-1234 $9,000

Cramford, John

123 West 4th Street, AnyTown, ST, 55212

4321-34-1234 $6,000

When the report is actually created with CodeReporter, these labels will
accelerate the placement of the report elements.

Finding common report areas
On a separate copy of the report prototype, draw rectangles around the parts
of the report that form a distinctive unit. A distinctive unit could be a part of
the report that only prints at the beginning or end, a section that repeats on
each page, a section that repeats occasionally throughout the report, or a
section that repeats continually throughout the report.

These sections, called areas, determine when and why common parts of the
report are outputted together. Deciding on the areas of a report early on in
the design helps clarify the design of the report -- assisting in the final layout
of the report.

Once the rectangles are drawn, write a brief note describing when the area of
the report is outputted. Figure 1.3 shows the areas necessary for the example
report, and a brief explanation why each area is as it is.

 Static Text

 Date of Report

Static Text

Line

 Static Text

Total of all amounts not
only those listed below
(Probably Look Ahead)

Db Field or Total

Db Fields

44 CodeReporter

Alumni Association
Patron's List

January 1, 1993 to May 21, 1993

Total Alumni contributions: $xxxxxxx

Patron Contributor ID Amount

Adams, John

123 West 4th Street, AnyTown, ST, 55212

4321-34-1234 $1,000

Baker, John

123 West 4th Street, AnyTown, ST, 55212

4321-34-1234 $9,000

Cramford, John

123 West 4th Street, AnyTown, ST, 55212

4321-34-1234 $6,000

Denver, John

123 West 4th Street, AnyTown, ST, 55212

4321-34-1234 $6,000

Locating report elements
Having a report prototyped may be the easiest part of obtaining a report.
Figuring out how to obtain the information in the report can often be
formidable. It requires a knowledge (or a list) of all the data files that might
possibly contain information in the report.

The static text elements of a report may be ignored, since they are entered
directly into CodeReporter when the report is laid out. Lines, frames, and
"special" elements may also be ignored at this point, since they, too, are
created with CodeReporter. That leaves the elements that are from data files
and graphics.

Creating a list of these extra report elements, and locating the files in which
they may be found, defines which data files and graphic files need to be
included in the report. Doing this ensures that essential files for the report
are found, while making sure unnecessary files are not included.

The list of report elements that use information from a data file for Figure
1.1 are:

• $xxxxxxx - the total amount of money contributed by alumni

• John Q. Public - the patron's name

This area is only
outputted at the
beginning of the
report.

This area is outputted
at the top of each page,
except for the first page
where it follows the
title of the report.

This area is outputted
once for every patron

Chapter 1: Designing a Report 45

• 123 West 4th Street, AnyTown, ST, 55212 - the patron's address which
is made up of the street address, city, state, and zip code

• 4321-34-1234 - the patron's contributor identity number, and

• $******* - the total amount of money the patron donated

Depending upon the way the databases are laid out, this could be a straight
forward report or a more complex report. In the simple case, the data file
might look like PATRONS.DBF Figure 1.4. All of the data file fields
necessary in the report are included in this one data file, so the report would
in essence be a listing of this one data file.

Figure 1.4

Usually, the information for a report is not as nicely laid out. It is often the
case that information is spread out through several related data files. Even
for this simple case, the data files necessary might look like those in Figure
1.5.

Figure 1.5

In most cases, data will be found in more than one data file, so for the rest of
this chapter, Figure 1.5 will be used as the example data file.

PATRONS.DBF

 NAME
 ADDRESS
 CNTRBID
 TOTAMT

CNTRBTOR.DBF

 ALUMID
 CNTRBID
 TAXID

ALUMNI.DBF

 ALUMID
 LAST_NAME
 FIRST_NAME
 ADDRESS
 CITY
 STATE
 ZIP

CONTRIBS.DBF

 CNTRBID
 DATE
 AMOUNT

46 CodeReporter

The list of report elements that depend upon data files is then linked up with
the data files that contain that information. Table 1.1 shows such a list.
Notice that some elements, such as the patron's name, are built using more
than one field, while others, such as the patron's contributor identity number,
are found in more than one data file. List them all, because they may all be
required during the layout of the report.

Element Data file fields for element
$xxxxxxx CONTRIBS->AMOUNT

Adams, John ALUMNI->LAST_NAME, ALUMNI->FIRST_NAME

123 West 4th Street, AnyTown, ST, 55212 ALUMNI->ADDRESS ALUMNI->CITY, ALUMNI->STATE,
ALUMNI->ZIP

4321-34-1234 CNTRBTOR->CNTRBID, CONTRIBS->CNTRBID

$******* CONTRIBS->AMOUNT

Table 1.1

Designing the Relation
The data file fields listed are the ones necessary for the report. If they all are
found in the same data file, this section may be skipped, and the report may
be laid out using CodeReporter.

As stated earlier, most reports require information from several data files.
The process of tying, or linking, these separate data files together is the heart
of relational databases. The relational database model and the process of
creating a relation using CodeReporter is discussed in-depth in Chapter 2.

Using the list of data files and their fields, draw lines between the common
fields. This visually illustrates the necessary linkages between the data files,
helps determine the type of relationship that exists between the data files, and
may help identify the report's top master data file.

Notice in Figure 1.6, the identification of the left to right relation. There are
(or may be) more than one contribution recorded in the CONTRIBS.DBF
data file for each person contributing. Each alumnus only has one record in
the CNTRBTOR.DBF data file, that is, all contributions made by an
alumnus are recorded under only one number.

Chapter 1: Designing a Report 47

Figure 1.6 Designing a Relation

Identify the Tags
CodeReporter can link data files only when there are index tags available. A
tag defines a quick method of locating the records. When two data files are
linked, the first data file uses a tag to quickly locate the appropriate
information in the second data file. The tags are generally created at the
same time as the data files.

Make a special note of each data file's tags in the relation list. If the data file
has a compound tag (containing more than one field), write the tag name at
the bottom of the field list and mark it as a tag. Change the lines to arrows if
the relation points to a tag field.

If a line in the relation diagram points to a field that does not have a tag built
upon it, it may be necessary to erase the relation line or to build a tag on the
field using another database tool. There only needs to be one link to a data
file for it to be included in the relation.

Determining Top Master Data File
Once this diagram is completed, determine the best flow for the relation.
Place the data files in a tree diagram with one data file at the top of the
diagram, with the rest of the data files below in the order dictated by the
linkage lines. In many relations, the data files may fit together in many
different ways. The following guidelines may be used to determine best flow
for a relation:

CNTRBTOR

 *ALUMID
 *CNTRBID
 TAXID

ALUMNI

 *ALUMID
 LAST_NAME
 FIRST_NAME
 ADDRESS
 CITY
 STATE
 ZIP

CONTRIBS

 *CNTRBID
 DATE
 AMOUNT Many

to one

One to
one

 * tag field

48 CodeReporter

• Each lower data file must have a tag pointed to by the higher data file.

• Many-to-one and one-to-one relations are of better design than one-to-
many or many-to-many relations

Figure 1.7 shows the different tree diagrams possible using the relation
diagram in Figure 1.6. Note the that the first relation has no one-to-many
relations and so technically may flow better than the other two. Depending
upon the nature of the report, however, it may be necessary to use one of the
other relation trees.

For example, if the report requires a list of all alumni, not only the ones that
contributed, it would be necessary to use the relation that has ALUMNI on
the top. See the Relational Reporting chapter for more information on the
implications of a relation upon the outcome of a report.

Figure 1.7 Relation Trees

Layout the report
Once this type of diagram is created -- assuming all the data files necessary
for the report can be tied together -- the report may be laid out. The rest of
this manual discusses the actual implementation of a relational report.

Validate the report
Once the report has been designed using the areas, relations, and report
elements discussed in this chapter, check the report against the original
Statement of Purpose to ensure that the final report does indeed fulfill the
original requirements. If the report passes this final check, the report cycle is
finished and the report design is complete.

to ALUMID
 tag

 CONTRIBS

 CNTRBTOR

 ALUMNI

to CNTRBID
 tag

Many to one to one

to CNTRBID
 tag

 ALUMNI

 CNTRBTOR

 CONTRIBS

to ALUMID
 tag

One to one to many

to ALUMID
 tag

 CNTRBTOR

 CONTRIBS

 ALUMNI

to CNTRBID
 tag

One to many and
 one to one

Chapter 2: Relational Reporting 49

2. Relational Reporting
Relational reporting is the act of creating a report which uses more than one data
file. These diverse data files are integrated in the report to produce a cohesive
whole "composite data file" upon which the report is based. Relational reports
generally take information from several affiliated data files and output them in a
more readable fashion. Relational reporting, put simply, is a process of creating a
report which integrates two or more data files.

Relations
When creating a relational report using more than one data file, it is necessary to
locate accurate and appropriate information in all the data files. That is,
information found in a record in one data file must be logically consistent with
the records found in the other data files. For example, the bill for customer
#2345, Jane Smith should not be sent to the address of customer #4321, Peter
Rodriguez.

In order to ensure that appropriate information is retrieved from all the data files
during the report, the manner in which information is obtained must be explicitly
described when the report is designed. When this description is created, the data
files are said to be linked, or related. A relation says, "When the report uses a
record in this data file, use this information from it to locate a record in that data
file that contains the same information."

The data files are related in a hierarchical Master-Slave relationship. The
controlling data file is called the master data file, and the controlled data file (the
one used for lookups) is called a slave data file.

Breaking the relation statement down helps define the necessary components of a
relation.

• "When a report uses a record in this data file" -- This defines the master data
file.

• "use this information from it" -- this is a dBASE expression that is evaluated
for each record of the master data file. This evaluated expression is used as
a search key into the slave tag. This expression is called the Master
Expression.

• "to locate a record in that data file that contains the same information" -- this
defines the slave data file used for the lookup, and the slave data file's index
ordering that is used to locate the corresponding record. The index ordering
used in the relation is called the slave tag.

50 CodeReporter

A relation between two data files only operates one way. One data file is used to
look up information for another data file. The one data file is controlled by the
other, whose records are only retrieved as dictated by the other data file.

In other words, one data file has some information in it that contains a reference
to information in another data file. If the two data files are related, the master
(first data file) tells the slave data file to locate a record in the slave data file that
contains the same information. The master data file, instead of only having a
reference to the information in the slave data file, then can use the actual
information located in the slave data file and output it.

1234

4321

6543

6612

Smith, Jane 123 West 3rd

Rawji, Fatim 204 East 44th

Jones, Jon 1 Microsquish

West, Davie 4420 14th St.

9124 Sanders, Mel Hamline & 4th

CUSTOMER.DBF

$100.00

$140.44

$304.10

$ 65.00

$102.99

SALES.DBF

1234

4321

6543

9124

6612

MasterMaster SlaveSlave

9199 Sanders, Jim Hamline & 4th

RelationRelation

Figure 2.1 Simple Relation

Without a relation, or linkage between SALES.DBF and CUSTOMER.DBF in
Figure 2.1, how would a report of sales list the names of the people to whom the
sale was made?

With a relation, all the fields of all the data files may be considered a part of a
single data file called the composite data file. The composite data file does not
actually exist on disk -- CodeReporter does not physically create a file containing
all the information of all the related data files -- but is a high level way of
describing the intricate way CodeReporter maintains the positioning of the
individual data files.

Once a relation is made, the composite data file contains all the fields of all the
data files in the relation. The information in the fields of the composite data file
is then kept accurate by CodeReporter during the output of the report.

Chapter 2: Relational Reporting 51

$100.00

$140.44

$304.10

$ 65.00

$102.99

SALES.DBF

6543

1234

4321

6612

Smith, Jane 123 West 3rd

Rawji, Fatim 204 East 44th

Jones, Jon 1 Microsquish

West, Davie 4420 14th St.

9124 Sanders, Mel Hamline & 4th

CUSTOMER.DBF

1234

4321

6543

9124

6612

MasterMaster

RelationRelation

SlaveSlave

$100.00

$140.44

$304.10

$ 65.00

$102.99

4321

6543

9124

6612

1234 Smith, Jane 123 West 3rd

4321 Rawji, Fatim 204 East 44th

6543 Jones, Jon 1 Microsquish

6612 West, Davie 4420 14th St.

9124 Sanders, Mel Hamline & 4th

1234

Composite Data File

9199 Sanders, Jim Hamline & 4th

One to One CorrespondenceOne to One Correspondence
Exact MatchExact Match

Figure 2.2 Composite Data File

While the composite data file contains all the records of the master data file, it
does not necessarily contain all the records of the slave data file. This is a direct
result of the Master-Slave relationship. When the relation is used, the records of
the master data file are used to locate corresponding records in the slave data file.
However, the master data file is not required to have references to all the records
in the slave. The slave is only used as a lookup.

The steps taken internally in CodeReporter are:

1. Position to a record in the master data file,

2. Take the common information in the master data file (defined by the master
expression)

3. Search for a record in the slave data file with the same information (this is
now the composite record),

4. Repeat steps 1 - 3 until there are no more records in the master data file.

It becomes apparent that if the master doesn't reference a particular record for the
slave, that slave record is not included in the composite data file. This is why it
is important during the design of the relation, that the statement of purpose for the
report be take into account. If the wrong top master data file is chosen, the
results of the report can be quite different than what is desired.

This occurs in the composite data file of Figure 2.2. Notice that in the
CUSTOMER.DBF, there is an entry for Jim Sanders (Customer number 9199).
However, since the master data file, SALES.DBF does not reference customer
9199, Jim Sanders is not included in the composite data file.

52 CodeReporter

It can also be the case that the slave data file does not have a corresponding
record for the master. The master data file requests information from the slave,
but the slave hasn't got a record containing that information.

When this occurs, CodeReporter can do one of three things -- depending upon the
way the relation was set up.

1. Blank Fields. CodeReporter fills in the fields of the slave data file with
spaces. Numeric values contain a zero value. This is the default action.

2. Skip Record. The composite record is ignored. Both the master and slave
records are skipped by the CodeReporter as if neither one existed.

3. Stop with Error. The report is stopped and an error message is displayed.
This may the report should be aborted.

Complex Relations
Using just two data files is fine if they contain all the information needed for the
report. If, however, two data files do not suffice -- if there are three or more data
files necessary for the report -- a complex relation is needed.

A complex relation is a relation that contains sub-relations. That is, a slave of
one data file must act as a master data file for a lower level slave.

A master data file can be linked to more than one slave data file, and a slave data
file can in turn be used as a master data file to link in yet another slave data file
for further relations. This allows the creation of a relation "tree", with all the
relations descending from a single top level master data file.

Terminology at this point can get somewhat confusing. As a convention the
term "top master data file" refers to the top data file in the relation tree, which is
the main data file of the report. "Master data file" refers to the controlling data
file in the relation currently being discussed.

All the relations descending from the top master data file as a unit are called the
relation set.

The diagram 2.3 in the CodeReporter manual below shows a complex relation
where the STUDENT.DBF data file is the master of the ENROLL.DBF data file,
which is then a master of the COURSE.DBF data file.

Relation Types
CodeReporter supports three different types of relations. Each different relation
type accesses data from the slave data file in a different manner. The three
relation types available in CodeReporter are: exact match, scan, and approximate
match.

Exact Match Relations
An exact match relation defines a one-to-one correspondence between the master
and slave data files. Each record from the master data file can have only one
corresponding record in the slave data file. An exact match relation will always

Chapter 2: Relational Reporting 53

return the first corresponding record in the slave data file, even if more than one
record matches the evaluated master expression. This is a one-to-one relation.
One record in the master data file locates one record in the slave data file.

In other words, for each record in the master data file, CodeReporter searches the
slave data file index until it finds a tag entry with the exact contents as the
evaluated master expression. The search stops when the first record match is
found, or until the entire slave tag has been searched.

In general, an exact match is best used in conjunction with a slave tag that is
unique.

The diagram shows an exact match relation between the SALES.DBF and the
CUSTOMER.DBF.

Approximate Match Relations
The second type of relation is the approximate match relation. This is similar to
the exact match relation in that it only permits one match for a master record.
The only difference is the way it behaves when an exact match is not found in the
slave data file. If the match fails, the slave record whose index key appears next
in the slave tag is used instead.

54 CodeReporter

Figure 2.3 Complex Relation

Slave of STUDENTS
Master of COURSE

COURSE.DBF
 CMPT389 Intro to Databases ...

 CMPT411 Computer Graphics

 MATH114 Intro to Calculus I

 ECON102 Intro to Macro Econ ...

 654321 Ken Hirshfeld 30

 123345 Sandra Donaghey 32

 873454 Barry Webber 22

 423232 Harvey Tyler 43

 463722 James Miller 34

 234533 David Krammer 25

 534452 Bernie McFarland 22

 835543 Douglas Samoil 39

 153543 Ron Watson 22

 858343 George Dean 43

 157932 Albert Miller 34

 876097 Scott Greig 23

 345742 Brian Perron 24

 336544 Allan Racine 29

 865422 Cameron Calvert 30

 125753 Reginald Page 24

 874632 Eric Lane 41

 765343 Upali Shivji 32

STUDENT.DBF
 Top Master data file
 Master of ENROLL

ENROLL.DBF
 234533 CMPT411

 234533 CMPT389

 423232 MATH114

 423232 ECON102

 423232 MATH114

 876097 CMPT411

One to Many:
Scan Relation

Slave of ENROLL

Many to One:
Exact Match

423232 Harvey Tyler 423232 ECON102 ECON102 Macro Economics

 STUDENT.DBF ENROLL.DBF COURSE.DBF

 Second Composite Record

423232 Harvey Tyler 423232 MATH114 MATH114 Intro to Calculus I

 STUDENT.DBF ENROLL.DBF COURSE.DBF

 First Composite Record

Chapter 2: Relational Reporting 55

Approximate match relations are generally quite rare and are usually used only
when a range of values in are represented in the data file by a single high value.

Figure 2.4 Approximate Match Relation

An approximate match relation is shown in Figure 2.4. In this case, the
employees' retirement benefits are determined by the number of years that they
put into the company. Instead of making an entry for each possible year served,
the BENEFIT.DBF only lists the upper limit for each pay out level. The first pay
out level is from zero to five years, the second is six to ten, et cetera until the
maximum entry of twenty-one years and above pays out 100,000.

If an exact match is not found using an approximate match relation, the record
used from the slave data file is not necessarily the record closest to that of the
master expression, but the first record with a key value greater than the master
expression.

In Figure 2.4, a master expression value of six looks up the tag entry for ten,
even though six is numerically closer to five.

Scan Relations
Scan relations define a one-to-many correspondence between the master data file
and the slave data file. This means that for each record in the master data file,
CodeReporter finds all the matching records in the slave data file, not just the
first.

Figure 2.5 uses a scan relation to relate the master data file STUDENT.DBF with ENROLL.DBF.
This relation would include every class in which a student is enrolled. In this example, the scan
relation produces three composite records using a single record in the master data file.

EMP_FILE.DBF

 EMP_NAME YEARS

ADAMS,J. 6

ADAMS, L. 15

COOK, P. 2

FRANK, B. 3

HENKE, D. 20

MOORE, E. 25

BENEFIT.DBF

YEARS BENEFIT

5 25000

10 35000

15 50000

20 75000

999 1000000

56 CodeReporter

CMPT389

CMPT411
MATH115

MATH114

MATH114

CMPT201

CMPT411423232

ECON102157932

ENROLL.DBF
C_CODE

Slave Data File

873454
423232

423232

234533

234533

125753

STU_ID

Master Data File

Harvey Tyler
Barry Webber

Ken Hirshfeld
32
30

22
43
34

Sandra Donaghey

James Miller

654321
123345
873454
423232
463722

STUDENT.DBF

AGEF_NAME L_NAMEID

CMPT389

MATH114
CMPT411
MATH115

CMPT201873454
423232
423232
423232

234533

22
43
43
43
34
25

Harvey
Harvey
Harvey

Tyler

Tyler
Tyler

Barry Webber

David Krammer
James Miller

873454
423232
423232
423232

234533
463722

Composite Data File

In Composite Data FIle
Three Entries

Figure 2.5 Scan Relation

Master of multiple slaves
A complex relation may also include one master data file and two or more slave
data files. That is, two slave data files may be related to the same master data
file. In most ways, this configuration is exactly the same as any other -- the
master expression for each relation is evaluated for the current record in the
master data file, and each result is used as a lookup key into each slave tag.

When a scan relation is not involved, the relation behaves in the standard manner
-- the composite record includes the information from the master data file's record
and from each slave data file. It does not matter whether the relations are exact
match or approximate match. See Figure 2.6.

However, when a single master data file has two or more slave data files each
with scan relations, CodeReporter performs the relation in a slightly different
manner. The error action for each of the master's scan relations must be set to
blank fields because the complex relation is performed on each scan relation
individually, leaving the other scan relations blank.

Figure 2.6 illustrates a single master with two data files, first with exact match
relations and then with scan relations.

Chapter 2: Relational Reporting 57

AAA 123 AAA APPLE 123 98765

As Exact Match RelationsAs Exact Match Relations

AAA 123

AAA 123

AAA 123

AAA 123

AAA 123

AAA 123

AAA

AAA

AAA

APPLE

ORANGE

PEACH

123

123

123

98765

76543

32109

As Scan RelationsAs Scan Relations

MasterMaster

MasterMaster

Slave 1Slave 1

Slave 1Slave 1

Slave 2Slave 2

Slave 2Slave 2

AAA 123

AAA

AAA

AAA

APPLE

ORANGE

PEACH

123

123

123

98765

76543

32109

MASTER

SLAVE1

SLAVE2

Composite Data FilesComposite Data FilesRelation SetRelation Set

Figure 2.6 Complex relation with one master and two slaves

A scan relation may not be mixed with exact or approximate match relations
when a single master data file has two or more slave data files.

Creating Relations
The first step in creating a report is to create the backbone relations for the
report. It is suggested for any report that may involve several data files that the
procedures described in the Report Design chapter be followed and that the
relation be sketched out on paper before creating them in CodeReporter.

Selecting Top Master Data File
A new relation may be created by selecting the FILE | NEW menu option. The
"Select Data File" dialog box is invoked (a Windows 3.1 common "File Open"
dialog), prompting for the top master data file. Use the directories and file name
list boxes to locate the top master data file for the report and open it by selecting
the "OK" button.

Path Names

CodeReporter, by default, saves the full path names to the data files used in a
report within the report file. As the report is loaded, the data files for the report
are also opened. If the data files have been moved or deleted, CodeReporter is
unable to locate the non-existent files. When this situation occurs, use the FILE |
OPEN WITH PATH menu option. After a report file has been selected,
CodeReporter pauses and prompts for the directory in which all the data files of
the report may be found. This new directory is then saved with the report.

Once selected, the top master data file for the report may not be changed. If
another top master data file is desired, the report must be re-created from the
beginning.

58 CodeReporter

Bit Optimized Query Technology
CodeReporter uses Sequiter's Bit Optimized Query Technology (BOT) to
perform high-speed querying of the composite data file. This is done by
comparing the query expression with the tag sort orderings of the top master data
file. If the query matches the tag expression, the tag itself is used to filter out
records that do not match the query.

This results in lightning quick performance, even on the largest of composite data
files, since only necessary records are actually physically read from disk.

See , below, for information on how to open tags for the top master data file.

In order to maximize the chances BOT can be used, it is suggested that all the
possible tags for the top master data file be opened.

The Relation Dialog
Slave data files may be added to the relation set by using the "Relation" dialog
(Figure 2.7) which is invoked from the RELATION | MODIFY menu option. This
dialog visually shows the relation as it is assembled -- with lines showing where
the linkages occur. The data file at the upper left of the "Relation" dialog is the
top master. As data files are added to the relation set, a button is added below
and to the right of its master -- visually creating the relation "tree." When more
slaves are added to the same master, their buttons are added directly below those
of previously added slaves

Figure 2.7 Modify Relation Dialog

Adding a Slave Data File
A slave data file may be added to the relation set by selecting its master and
choosing the NEW SLAVE menu option, or double clicking the master's button. It
makes no difference whether or not the master data file is already a slave of
another data file. The "Select Data File" dialog is invoked to locate and open the
slave data file. Again, use the file name and directory list boxes to locate the
slave data file.

Chapter 2: Relational Reporting 59

Modifying a Relation
The "Data File Link" dialog (Figure 2.8) is used to define and modify a relation
between a master and a slave data file. This dialog is automatically invoked
when a new slave is created. It may be invoked at a later point for modification
of the relation by selecting the slave data file's button and choosing the MODIFY

LINK menu option, or by clicking on the slave data file's button with the right
mouse button.

Enabling BOT

If the selected data file button is the top master data file for the relation, and
MODIFY LINK (or the right mouse button) is used, the "Master Index Files" dialog
is invoked. This dialog may be used to open and/or close index files for the top
master data file -- thus enabling the report to take advantage of BOT.

 If the relation is new, CodeReporter fills the "Data File Link" dialog with default
information, as shown in Figure 2.8. Before the new relation is accepted, both
the "Master Expression" edit control and an existing tag must be selected.

Master Expression

The master expression is a dBASE expression, based on the master data file (or
data files higher in the relation tree), that is used as a lookup into the slave tag.
When the report is run, this expression is evaluated for each record retrieved for
the master data file, and its results are used to locate a record in the slave data
file via the specified tag for the slave.

This expression is generally as simple as a field from the master data file, but
may be more complex -- involving fields from higher data files in the relation tree
and/or dBASE functions.

60 CodeReporter

Figure 2.8 Data File Link Dialog

A master expression may either be typed manually into the "Master Expression"
edit control, or the "Easy Expression" button may be used to simplify the
expression entry.

For more information on dBASE expressions and the "Expression Entry" dialog
box, see the Expressions chapter.

Selecting a Tag

The tags for the slave production index file (if there is one) are listed in the
"Existing Tags" list box. When a tag in the list is selected, information about it,
including its sort ordering, is displayed in the "Slave Tag" edit control. If used in
the relation, the dBASE expression listed for the tag should correspond to the
master expression for the lookup to function correctly.

Opening An Index

If there isn't a tag that corresponds to the master expression, or if the slave data
file does not have a production index file, the "Existing Tags" list box only
contains the 'None' entry.

Tags from index files other than the production index file may be opened and
used in the relation by selecting the "Open Index" button. This button invokes
the "Select Index File" dialog box which may be used to locate and select the new
index file.

The CodeReporter executable is index file specific and may only open index
files which are compatible with its index format. Reports may not mix index file

Chapter 2: Relational Reporting 61

formats. Other index file formats require a different index specific
CodeReporter executable. See the Getting Started section of this manual for
using the appropriate CodeReporter DLLs.

Once an index file is opened, its tags may be selected for the relation from the
"Existing Tags" list box.

Index files containing unused tags may be closed using the "Close Index" button.
When selected, the "Close Index" button closes the index file associated with the
selected slave tag, and removes all other tags for that index file. However, since
having the added open index files does not degrade performance, it is
unnecessary to close them.

Slaves Without Tags

CodeReporter allows an alternate method of performing lookups that does not use
tags from the slave data file. Instead of having the master expression evaluate to
a lookup key, it may evaluate to a record number. This record number specifies
the physical record number of the slave record retrieved from the slave data file.

This method is mainly useful on static unchanging slave data files that are never
packed. This method has the advantage of being faster and more efficient than
performing seeks on a tag.

To use this method, simply select the "None" option in the "Existing Tags" list
box. No tag is selected, and the master expression is then taken as a record
number.

It is the responsibility of the report designer to ensure that the record number for
the evaluated master expression references the appropriate slave record number
for the master data file record.

If the evaluated master expression contains a reference to a non-existent
record number (<= 0 or > the number of records in the slave data file),
CodeReporter generates a -70 error as the report is generated.

Setting the Relation Type

The "Data File Link" dialog is used to set the type of relation between the master
and slave data files. The different relation types specify how records are
retrieved from the slave data file. See Relation Types, above, for information on
the different types of relations.

The default relation type, an exact relation, may be modified by selecting either
the "Scan Relation" or "Approximate Match Relation" radio buttons.

The Error Action

The "Error Action" radio buttons control how CodeReporter acts when a lookup
into a slave data file fails to locate a record. For more information on error
actions, see Error Actions, above.

The default error action, blank fields, may be modified by selecting either the
"Skip Record" or "Stop with Error" radio buttons.

When an approximate match relation is defined, the only error action available
is "Blank Fields".

Moving a Slave Data File

62 CodeReporter

As shown in "Figure 2.7", the buttons representing the data files in the "Relation"
dialog contain movement handles. The dark gray square in the upper right corner
of the data file button may be used by the mouse to move a slave data file above
or below a slave of the same master.

The only advantage to moving a slave higher or lower in relation to its master
data file is that lower level slaves may use the fields of higher level slaves in the
master expression for its relation.

In Figure 2.7, the STORES - EXPENSES relation may use all the fields of the
COMPANY.DBF, STORES.DBF, and SALES.DBF data files to define its
relation. The STORES - SALES relation, on the other hand, may only use fields
from the COMPANY.DBF and STORES.DBF data files in its master expression.
A data file may be moved in relation to its master data file by pressing and
holding its movement handle with the left mouse button and dragging it higher or
lower. If a data file may not be moved, dragging it to a new location has no
effect.

Sorting the Composite Data File
When information is entered into data files, it is usually done in a random
manner. All the sales for customer #1 are not always entered before the sales for
customer #300. However, reports generally require the information be outputted
in a logical order -- alphabetic, numeric, by date, etc.

CodeReporter provides a way to sort the composite data file, via the sort
expression. This dBASE expression is evaluated for each composite record, and
the results (and the composite records) are retrieved in the new logical order.
This process is called sorting the composite data file.

Sort Expression
The sort expression is simply a dBASE expression that can incorporate any field
or combination of fields in the composite data file. Figure 2.9 illustrates the
affects of a sort expression. Notice that the sort expression incorporates a field
from the master data file as well as the slave data file.

Entering a Sort

The sort expression is entered using the "Easy Expression" dialog. This dialog
may be invoked from the REPORT | SORT EXPRESSION main menu option.

For more information on dBASE expressions and the "Easy Expression" dialog
box, see the expressions subsection of the Objects chapter.

Chapter 2: Relational Reporting 63

Figure 2.9 Sorting a Relation Set

Query the Composite Data File
A query is a logical expression which is used to create a subset of the composite
data file. This query expression creates a filter through which composite records
of the relation must pass. Only the records that meet this filter criterion are
included in the report.

That is, this expression is evaluated for each composite record of the composite
data file and if it results in a .TRUE. value, the record is included in the report,
otherwise it is ignored. For example, if it was required that the relation described
in Figure 2.9 only include the people in room A994 whose name began with an
'S', the queried composite data file (in natural order) would be that of Figure
2.10.

Entering a Query

The query expression is entered using the "Easy Expression" dialog. This dialog
may be invoked from the REPORT | QUERY EXPRESSION main menu option.

64 CodeReporter

123

123

123

678

678

678

678 Smith, J

123

Smith, A123

Shivji, R

123 O'Brien, M

678 Hunter, N

678 Gruter, T

Queried Composite Data FileQueried Composite Data File

123

678

A994 A994

A994

A994

123

123 123 Smith, A

123 Shivji, RA994

A994

C424

C424

C424

C424

MASTER

IDNUM

Query ExpressionQuery Expression

ROOM

??
?

678

123

456

123

123

678

678

Smith, J

Smith, A

Allen, P

Shivji, R

O'Brien, M

Hunter, N

Gruter, T

SLAVE
IDNUM NAME

MASTER->ROOM = 'A994' .AND.MASTER->ROOM = 'A994' .AND.
SLAVE->NAME > 'S'SLAVE->NAME > 'S'

RelationRelation

RegularRegular Composite Data FileComposite Data File

Figure 2.10 Queried Data File

Relations on Disk
Many times the relation set of one report is the same, or similar to that of other
reports. Relation sets created with CodeReporter may be saved to disk and
retrieved into new reports using the FILE | SAVE RELATION and FILE | LOAD

RELATION main menu options. These menu options prompt for the file name of
the relation file and save/load the relation.

Relations are saved into special CodeReporter relation files which have a .REL
extension. If a relation is not needed for another report, it is not necessary to
save it, since a saved CodeReporter report file (.REP extension) contains the
report's relation.

When loading a relation file from disk, the current report's relation, and all
objects, totals, and calculations, are deleted.

Saving as Code
CodeReporter may also save the relation as source code used with the
CodeReporter API function calls. Use the RELATION | SAVE RELATION AS

SOURCE CODE menu option. After selecting a destination file type, select a file
name, and directory using "Specify A Source File" dialog. This file may then be
used with the CodeReporter API. See the CodeReporter API for more information
on using the generated source code file.

Chapter 2: Relational Reporting 65

Figure 2.11 Save As Code Dialog

Example
As an example of building a relation, this section will describe the steps
necessary for building the relation shown in Figure 2.7.

Top Master Data File
The top master data file for any relation, COMPANY.DBF in this case, is set
when a new report file is created. Select FILE | NEW to create a new report
file.

When the "Select Data File" dialog appears, locate the COMPANY.DBF
data file (in the CodeReporter examples directory: .\EXAMPLES), and select
the "OK" button.

The report definition screen is displayed. Select RELATION | MODIFY to add
the slave data files to the relation set. The "Relation" dialog will look like
Figure 2.12.

66 CodeReporter

Figure 2.12 Relation dialog for example

The top master data file is displayed as a button with the data file's name
upon it. The next related data file to add is the STORES.DBF data file.
Choose the NEW SLAVE menu option and, when the "Select Data File"
dialog appears, select the STORES.DBF data file.

Modifying the Relation
Since this is a new relation, the "Data File Link" dialog box automatically
appears. STORES.DBF has two tags in the "Existing Tags" list box:
COMPID (keyed on STORE->COMPID) and COMP_STORE (keyed on
STORE->COMPID+STORE->STOREID). The master data file COMPANY has
a COMPID field, but no STOREID field, so the STORES.DBF tag
COMPID should be selected.

Use the keyboard to tab to the "Existing Tags" list box and select COMPID,
or click on it with the left mouse button. Notice that the "Slave Tag" edit
control automatically displays information on the COMPID tag.

A master expression that corresponds to the selected tag should be entered
into the "Master Expression" edit control. In this case, the master expression
is merely a field of the master data file. Enter the following text (but do not
hit the enter key).

COMPANY->COMPID

dBASE III and Clipper users must manually open the index files containing
the appropriate index ordering using the "Modify Link" dialog's "Open
Index" button. The files used in this example are found in the
CodeReporter examples directory (.\EXAMPLES) and are named:

• • STCOMPID.NTX (.NDX) (for STORES.DBF)

• • SACMPSTO.NTX (.NDX) (for SALES.DBF)

• • EXCMPSTO.NTX (.NDX) (for EXPENSES.DBF)

The type of relation between COMPANY and STORES may depend upon
the report. Since each company likely has more than one store, however, the
relation type is probably a scan relation. Use the mouse to select the "Scan
Relation" radio button.

Change the default error action, Blank Fields, to Skip Record and the
"Modify Link" dialog looks like Figure 2.13. Press the "OK" button.

Chapter 2: Relational Reporting 67

Figure 2.13 Partially completed sample relation

Adding a Slave to a Slave
The STORES.DBF data file is a slave of the COMPANY.DBF data file. In
order for the relation to properly retrieve information for each store's sales, an
additional data file, SALES.DBF, is needed. The SALES.DBF data file
contains the following fields: COMPID, STOREID, AMOUNT, and
PRODCODE (a reference to a products data file). As it can be seen each
sale in the data file is associated with a company and a store. As a result, in
order for the sales to be attributed to exactly the right store, information
about the company and its store is necessary.

This indicates that the SALES.DBF data file must be placed within the
relation in a place where it has access to both the COMPANY.DBF and
STORES.DBF data files. The SALES.DBF data file is properly placed as a
slave of the STORES.DBF data file. STORES.DBF, then, is acting as both
a slave data file of COMPANY.DBF and a master data file of SALES.DBF.

Use the Tab key to move the selected data file (currently COMPANY.DBF)
to STORES.DBF or select STORES.DBF with the left mouse button.

To add the SALES.DBF data file to the relation, select the NEW SLAVE menu
option or double click on the STORES.DBF data file's button. Either one
invokes the "Select Data File" dialog box in which the SALES.DBF data file
may be located and selected.

Once the data file is selected, the "Modify Link" dialog box is invoked so that
the relation may be properly set up. Enter the following settings and select
the "OK" button:

• Select the COMP_STORE tag entry,

• Enter COMPANY->COMPID+STORE->STOREID for the master expression,

• Set a scan relation by selecting the "Scan Relation" radio button,

• Ensure the default error action, blank fields, is selected using the "Blank
Fields" radio button.

68 CodeReporter

Once these settings are made, choose the "OK" button to exit the "Modify
Link" dialog. The SALES.DBF data file is added below STORES.DBF.

The reasoning behind placing the SALES.DBF data file in its position is
exactly the same for the EXPENSES.DBF data file. EXPENSES.DBF
requires information from both COMPANY.DBF and STORES.DBF, but
not SALES.DBF. As a result, it should be placed on the same level as
SALES.DBF.

While the STORES.DBF data file's button is selected, choose the NEW SLAVE

menu option, select the EXPENSES.DBF data file, and enter the
following settings in the "Modify Link" dialog:

• Select the COMP_STORE tag entry,

• Enter COMPANY->COMPID+STORE->STOREID for the master expression,

• Set a scan relation by selecting the "Scan Relation" radio button,

• Ensure the default error action, blank fields, is selected using the "Blank
Fields" radio button.

Select the "OK" button to close the "Modify Link" dialog and return to the
"Relation" dialog.

This complex relation may now be used as the basis for a complex report
involving information from all four data files.

Since this relation involves two scan relations using the same master data
file, the information retrieved may be slightly different than expected. See
the Master of Multiple Slaves section, above for more information.

Chapter 3: Groups 69

3. Groups

What is a Group?
It is the purpose of all reports to put randomly entered data into an organized
format that is easily understandable. Reports break up this data into logical
sections and/or summarizes it to put the data into a useful format.

By sorting the composite data file, records with common information are
placed next to each other. Records may be sorted upon one or many fields.
That is, the composite records are accessed in a new order depending upon
the fields located in the sort expression.

As a result of being sorted, these records can be thought of as being in logical
subsets.

For example, a data file that is sorted on department code creates a composite
data file that contains subsets of different departments. All records
containing department 'A' will be placed before the records containing
department 'B'. All records containing department 'A' may be thought of as a
subset of the composite data file.

When the sort expression contains more than one field from the composite
data file, the resulting composite data file may be thought of as having major
subsets which contain their own minor subsets.

For example, a sort expression containing both the department code and the
location code will have individual department subsets which contain their
own location subsets. See Figure 3.1 for an illustration of major and minor
subsets.

These inherent subsets, then, also describe the overall flow of the report. The
report logically progresses from one record to the next, stepping through each
major and subsequent minor subsets of the composite data file, until all
records have been processed.

When each new subset of the composite data file is processed for the report,
certain actions may be performed, such as accumulating/resetting totals,
outputting fields from the composite data file, outputting titles, performing
calculations, etc. Which actions are performed for a given composite record
depends upon the subset in which the record may be found.

These subset-specific actions are performed by CodeReporter in constructs
called groups.

70 CodeReporter

The best way to illustrate the concept of subsets and groups are by way of an
example. Figure 3.1 shows a composite data file which is sorted on DEPT,
LOC, EMPLOYEE, and DATE. As shown on the right, sorting the data file
in this manner produces four distinct subsets -- one for each part of the sort
expression.

ENG

ENG 002

002

Sanders, Bo

Sanders, Bo

07/20

07/21

8.5

7

ENG

ENG

ENG

001

001

001 Smith, John

Jones, Pete

Jones, Pete

07/20

07/21

07/20

8.5

7

8.5

ENG

ENG 001

001

Jones, Pete

Jones, Pete

07/20

07/21

8.5

7

ENG 001 Jones, Pete 07/20 8.5

ENG 001 Smith, John 07/20

ENG

ENG 001

001

Jones, Pete

Jones, Pete

07/20

07/21

8.5

7

8.5

ACT

ACT

ACT

ACT

ACT

001

001

001

001

002

Adams, Jon

Adams, Jon

Bland, Van

Bland, Van

Tech, June

07/20

07/20

07/21

07/21

07/21

8.5

8.5

3

3

3

ENG

ENG

ENG

ENG

ENG

001

001

001

002

002

Smith, John

Sanders, Bo

Sanders, Bo

Jones, Pete

Jones, Pete

07/20

07/20

07/21

07/21

07/20

8.5

8.5

7

7

8.5

DEPT LOC EMPLOYEE DATE HRS

A 'subset' of all records

A subset of all records where DEPT is 'ENG' and
LOC is '001' and EMPLOYEE is 'Jones, Pete' and
DATE is '7/20'

records where
DEPT is 'ENG' and

LOC is '001' and
EMPLOYEE is 'Jones, Pete'

A subset of all

records where
DEPT is 'ENG' and

LOC is '001'

A subset of all

records where

DEPT is 'ENG'

A subset of all

Figure 3.1 A composite data file and its subsets

Each of these subsets will most likely have an action associated with it;
probably providing a subtotal of hours for each subset; a total number of
hours worked by each employee, a total number of hours worked at each
location, etc.

As a result, each subset may be represented by a group which will perform
this action. The full composite data file itself may also be considered a group
in this regard, since the report will likely contain a grand total of all
departments. The sorted composite data file in Figure 3.1 suggests a five
group report similar to the one found in .

Group Expression
The group expression is a dBASE expression that describes the subset with
which the group is associated. This expression is evaluated for each
composite record in the data file, and when its value changes, the group's
actions are performed (mostly outputting the group's header and footer for the
composite record). This change of the evaluated expression is called a reset
condition -- also known as a control break.

Chapter 3: Groups 71

If a group does not have a group expression (the "Group Expression" edit
control is left blank), a reset condition occurs for every record of the
composite data file. This is generally used for producing the detail lines of a
report.

There is usually only one group in a report that has no group expression.
Having more than one group without a group expression can cause
undesirable results when outputting the report.

In "Figure 3.1" on page 70, the first subset is based on all records that have
'ENG' in the DEPT field. The DEPT field determines the difference between
that subset and the one that contains 'ACT'.

72 CodeReporter

Hours Report

Department: ENG

Location: 001

Employee: Jones, Peter

7/20 8.50

7/21 7.00

Total for Jones, Peter 15.50

Employee: Smith, John

7/20 8.50

Total for Smith, John 8.50

Total for Location 001 24.00

Location: 002

Employee: Sanders, Bo

7/20 8.50

7/21 7.00

Total for Sanders, Bo 15.50

Total for Location 002 15.50

Total for department ENG 39.50

•

•

Grand Total for all Departments: 65.5

Figure 3.2 Report Groups

Once per report

 Once per report

Once for every DEPT

 Once for every DEPT

 Once for every LOC

 Once for every LOC

Once per EMPLOYEE

 Once per EMPLOYEE

Once per record
 (or DATE)

Chapter 3: Groups 73

The group expression for that group would then be "DBF->DEPT" (assuming
the data file name was DBF). Notice that the group expression was not
"DBF->DEPT='ENG'". This is because the group expression does not
describe a specific subset, but the basis of the subset. When the evaluated
group expression changes, a new subset has been reached and the actions of
the group are performed.

The group is "grouped on" its group expression.

Header and Footer
A group can be delimited at the beginning and ending of the subset by
outputting a section of text. These sections, or report areas (See), are
associated with the group and are an integrated part of the action of the
group.

The area at the beginning of the group (eg. "Department: ENG" in Figure
3.2) is called the group header, and the area at the end (eg. "Total for
department ENG") is called the group footer.

A group's header and/or footer may contain zero, one, or more report areas --
which are sections of the report in which output objects may be placed (see
and). The group header and footer are used to perform the actions of the
group, that is, when a group reset condition occurs, the report areas
associated with the header and footer are outputted.

The main difference between the report areas associated with the header and
the footer is that:

• the values of the objects outputted in the header area are based on the
composite record that caused the reset condition, and

• the values of the objects outputted the footer area are based on the
composite record immediately prior to the composite record that caused
the reset condition.

See Figure 3.3 for a visual representation of this concept. When a group is
created, it automatically contains one header and one footer area.

74 CodeReporter

SMITH

SMITH

SMITH

SMITH

SMITH

SANDERS

SANDERS

THOMPSON

THOMPSON

LNAME NUM

. . .

. . .

6

5

1

2

3

4

5

3

4

SMITH subset

Moving from the SANDERS subset to the SMITH
subset causes a reset condition which initiates
the output of the areas associated with the
LNAME group.

Areas associated with the header of the LNAME
group output this record.

Areas associated with the footer of the LNAME
group output this record.

Figure 3.3 Headers and footers

Creating Groups
A group is created by using the GROUP | NEW menu option. Each new group,
by default, is created so that all of the previously created groups are between
the new group's header and footer area(s). This default action creates new
groups at the highest (outermost) level.

When a group is placed within another group, it is said to be nested.

As groups are created, new information windows are created to identify the
groups and their header(s) and footer(s). The information windows may be
hidden by de-selecting the VIEW | INFO Windows menu option. See the Report
Design Screen in the Getting Started section and for information on the
information windows.

Using the GROUP | NEW menu option invokes the "Group Settings" dialog (As
shown below in Figure 3.4).

Name
A group may have a descriptive name associated with it which helps the
report designer identify the contents of the group. By default, CodeReporter
uses "Body" for the first group, "Group 2" for the second group, "Group 3"
for the third, etc.

This name is only a descriptive way of referring to the group, and may be
changed or modified as desired. Usually this descriptive name reflects the
group expression in some way.

Chapter 3: Groups 75

Position
The "Position" setting determines where the group is placed in relation to
other groups. The innermost group in the report (the smallest subset) is
group 1. New groups are by default made the outermost group, and have the
highest group number.

Changing this number moves the group into the desired position and
shuffles the other groups appropriately.

Figure 3.4 Group Settings Dialog

Group Options
CodeReporter provides some special group handling that provides ways to
customize the look of the reports.

Swap Header and Swap Footer
When a group encounters a reset condition and the "Swap Header" radio
button is set for the group, a new page is generated and the group's header is
outputted in the position of, and instead of, the page header area. The page
header is not outputted on that page.

This is an advanced concept that may be difficult to understand initially. It
may be necessary to take some time to examine Figure 3.5 and the text

76 CodeReporter

listed below before the concept is understood. Also see the Statement of
Accounts tutorial in the CodeReporter printed documentation.

In a similar manner, when a group encounters a reset condition and the
"Swap Footer" check box is set for the group, the rest of the current page is
skipped and the group footer is used in the position of, and instead of, the
page footer area. The page footer is not outputted for that page.

A swapped header is generally used to display different information or
information in a different format than the page header area.

The main purpose of a swapped footer or header is to suppress the page
header/footer, generate a new page, and output the group's area whenever a
group reset condition occurs. This is different than the area suppression
condition available for the page header/footer areas (See), because the area is
suppressed on a change of value instead of a logical condition.

Figure 3.5 shows a sample report that uses a swapped header and a swapped
footer. The page header used on page 2 and 3 is not appropriate for page 1,
since the summary provided in the page header is already found in the group
header. Every new customer invoice begins upon a new page, and the
customer's full information is listed.

Chapter 3: Groups 77

John Q. Public
1234 Any Street
AnyTown, NY, 12345

STATEMENT OF ACCOUNTS

Jan $200.00
$200.00Feb

Feb
Feb
Mar

$150.00
$150.00

$300.00

15, 1990
15, 1990

15, 1990

16, 1990
17, 1990

Apr
Apr
July

15, 1990
16, 1990

$150.00
$150.00

$200.00

Page header

Aug
Aug
Aug
Sep
Sep
Sep
Oct

15, 1990
16, 1990
30, 1990

30, 1990
15, 1990
16, 1990
30, 1990

15, 1990

$150.00
$150.00

$300.00

$150.00
$150.00

$300.00

$200.00

John Q. Public Page: 2

Group footer -- Swapped with
page footer

Oct
Oct
Dec
Dec
Dec
Dec
Dec

15, 1990

16, 1990
17, 1990

16, 1990
17, 1990
20, 1990
20, 1990

$150.00
$150.00

$150.00
$350.00

$150.00
$150.00

$600.00

John Q. Public Page: 3

Payment Due: $100.00

Group header -- Swapped with
page header

Figure 3.5 Swap Header/Footer Example

If a simple page header were used instead of a swapped group header, the
unbordered grayed portion (as page header) would be printed on each page of
the invoice -- giving very little differentiation between the cover page and the
remaining pages.

Notice that Figure 3.5 does not have a page footer area. In the case of a non-
existent page header/footer, the group header/footer is outputted where the
page header/footer would have been.

Repeat Header
When a subset of the composite data file (represented by a group) cannot fit
on the rest of the current page, having the "Repeat Header" radio button
selected causes CodeReporter to output the group's header area at the top of
the page (below the page header), even though a reset condition has not
occurred.

This is useful for maintaining column titles across page boundaries.

78 CodeReporter

Reset Page
The "Reset Page" radio button generates a new page when a group reset
condition occurs. The actual sequence of events are: the group's footer, as
well as the footers of all inner groups, are outputted and a new page is
generated. The next page's header and the group's header are both processed
at the beginning of the new page.

Reset Page Number
The "Reset Page Number" functions exactly the same as the "Reset Page"
option, except that in addition, the new page's page number is reset to '1'.

Hard Reset Page
The behavior of reset page (including the page reset for swap header and
reset page number) is affected by the Hard Reset Page setting in the "Report
Preferences" dialog. See .

Modifying a Group
The "Group Settings" dialog box is used to change the settings for an existing
group. Once a group is created, this dialog may be invoked either by
selecting GROUP | MODIFY or by right clicking on the group's information
window. See for information on the settings in the "Group Settings" dialog.

Deleting a Group
The selected group, and all areas and output objects associated with it may be
deleted by selecting the GROUP | DELETE menu option. Deleting a group does
not affect other groups in the report.

Selecting a Group
Clicking the left mouse button anywhere within an area of the group -- or
clicking upon an object within an area -- selects that group.

Alternately, the Ctrl- Up and Down Arrow keys may be used to select another
group.

Reset Conditions and Group Printing
When a group expression changes, a reset condition occurs. This reset
causes that group's footer to be processed, its totals to be reset, and finally
the group's header to be processed with the next composite record. In a multi-
group report, a reset condition resets the group whose expression changed, as

Chapter 3: Groups 79

well as all lower level groups (groups between that group's header and
footer).

Figure 3.6, in your CodeReporter manual shows the output of a report with
groups on Year, Month, and Day. When the 'Month' group is reset the 'Day'
group is automatically reset.

Groups are only outputted when they are reset. In Figure 3.6, in your
CodeReporter manual, the second record is exactly the same as the first.
Since each group has a reset condition -- and none of them were reset -- the
second record is not outputted. However, when the third record (FEB 20,
1992) is encountered, the 'Month' group is reset. This automatically resets
any inner group ('Day', in this case).

When a reset condition occurs, the footers are outputted, in order beginning
with the innermost group, until the footer of the original group that caused the
reset condition is outputted.

Figure 3.6, in your CodeReporter manual, demonstrates this by first
outputting the footer of the 'Day' group and then the footer of the 'Month'
group. Notice that the 'Year' group footer is not outputted at this point,
because the 'Year' group has not been reset Also notice that the date value
displayed in the 'Day' and 'Month' footers is that of JAN 20, 1992, the second
record, and not FEB 20, 1992, the record that caused the reset condition.
This illustrates the second rule mentioned in Group Header and Footers,
above: footers are outputted with the values from the record immediately
prior to the record that caused the reset condition.

Once the innermost group is processed, the next record is used. In Figure 3.6
in your CodeReporter manual, the FEB 21, 1992 record resets the 'Day'
group. Since only the 'Day' group is reset, only the footer for the 'Day' group
is outputted -- again with the values of the previous record -- and then its
header is outputted with the values of the new record. The processing of all
the records is complete, so the report is ended by outputting the footers of all
the report's groups. Therefore, in brief, when a group is reset:

• The footers of all the groups are outputted first, before any of the headers
are outputted. The footers are outputted in order, beginning with the
innermost group, until the original group that caused the reset condition
is output. The value of the record immediately prior to the record that
caused the reset condition is used to output the group footers.

• If any of the groups reset have the "Reset Page" option set, the output of
the report begins on a new page. (See , above and)

• Once the footers have been processed, the headers are processed inwards
beginning with the group that was reset using the value of the record that
caused the reset condition.

Groups outside a group that encounters a reset condition are not
processed. In this example, the 'Year' group is not reset until its own
group expression has changed.

80 CodeReporter

Figure 3.6 Group Reset Conditions

 JAN 20, 1992

 JAN 20, 1992

 FEB 20, 1992

 FEB 21, 1992

Sample Data File

 JAN 20, 1992

Beginning of report
All totals are zeroed
and then accumulated.
All headers are
outputted.

 JAN 20, 1992

Second record, no reset
conditions, all totals are
accumulated.

 FEB 20, 1992

 FEB 21, 1992

‘Month’ reset condition
encountered, ‘Day’ is
automatically reset.

Output footer for inner group
Output footer for Month

Reset Month and Day totals to
zero and accumulate all.

Output header for Month,
Output inner group’s header

‘Day’ reset condition
encountered
Output footer for Day group

Reset Day total to zero and
accumulate all totals.
Output header for Day group

End of File. Output all footers

Year: 1992

Month: January

Day: 20

*** Day is reset *** Days the Same: 2 01/20/92

 *** Month is reset *** Months the Same: 2 01/20/92

Month: February

Day: 20

*** Day is reset *** Days the Same: 1 02/20/92

Day: 21

*** Day is reset *** Days the Same: 1 02/21/92

 *** Month is reset *** Months the Same: 2 02/21/92

*** Year is reset *** Years the Same: 4 02/21/92

Chapter 4: Areas 81

4. Areas
An area is a spot in the report where output objects may be placed. The page
header, page footer, and the main body of the report all are considered areas
where output objects may be placed. Except for special areas (page
header/footer, title/summary), areas are associated with groups, which dictate
when the output objects within the area may be outputted. When a group
encounters a reset condition, the areas associated with the group are
outputted.

When a group is created, it has two default areas associated with it: the group
header and the group footer -- except for the default "BODY" group which
only has a group header. These areas may be used as defaults for the group's
report areas, or they may be sized, deleted, or suppressed as needed by the
report.

Figure 4.1 Area and Sizing Handles

Areas are very simple to use, yet very flexible. In addition to grouping
output objects, a set of mutually exclusive suppressed areas may serve to
change the layout of the report. A group may have several header areas
and/or several footer areas which may be outputted at different points within
the report -- depending upon the contents of the report. In addition, an area
can be configured so that it may span a page break.

Selecting an Area
Clicking the left mouse button anywhere within an area -- or clicking upon an
object within an area -- selects that area. Alternately, the Ctrl- Up and Down
Arrow keys may be used to select another area. Selecting an area in this
manner also selects the first output object added to the area. Once an area is

Sizing
Handles

Selected
Area

Area

82 CodeReporter

selected, it may be modified, deleted, or an additional area for the current
group may be created.

Creating an Area
A header or footer area may be created for the selected group by using the
AREA | NEW HEADER, or AREA | NEW FOOTER menu options. To create a Page
Header, Page Footer, Title or Summary area, choose the appropriate menu
option from the Area menu. For more information on these areas, see the
appropriate sections below.

Deleting an Area
The selected area may be deleted by choosing the AREA | DELETE AREA menu
option. Deleting an area also deletes all output objects within the area.

All areas in a group header or footer may be deleted, however the information
window for the last group area will remain displayed if the VIEW | INFO

WINDOWS menu option is set.

Modifying an Area
An area has three characteristics that may be modified: its size, whether it is
suppressed, and whether it spans a page break.

These options may be set through the "Modify Area" dialog box , which is
invoked for the selected area with the AREA | MODIFY AREA menu option, or
by right clicking within the area.

Sizing an Area
The vertical size of an area may be changed by using the mouse or the
"Modify Area" dialog box (Figure 4.2). The horizontal size of areas may not
be individually changed. The horizontal size of the report is changed by
modifying the entire report's page size or margins.

Expanding the vertical size of an area does not affect the position of the
output objects within the group. Reducing the size of an area, however, may
cause some output objects to be deleted if, at their current position, they no
longer completely fit within the new, smaller-sized area.

The desired size for the area may be set manually by entering the new height
in the "Modify Area" dialog's "Height" edit control. The units of
measurement are those set with REPORT | PREFERENCES.

Using the mouse

The mouse may also be used to change the vertical size of a selected area by
dragging one of the selected area's size handles to the desired position with
the left mouse button. See Figure 4.1.

Chapter 4: Areas 83

Figure 4.2 Modify Area Dialog

Allow Page Breaks
When the "Allow Page Breaks" option is enabled (the default) for an area, the
area may span a page break. If a page break (bottom of the page minus the
page footer) would fall within an area, the area is divided between the two
pages. CodeReporter outputs as much of the area as it can fit on the page --
without dividing any object(s).

Frames, lines, and word wrapped objects that span most of the height of an
area may make this setting useless. CodeReporter will not divide an object
between two pages, so even if the "Allow Page Breaks" radio button is set,
the whole area may be placed on a following page regardless.

If an output area must not be divided between two pages, de-select the "Allow
Page Breaks" radio button.

Suppressing an Area
A logical dBASE expression may be associated with an area to determine
whether or not the area should be outputted. If the dBASE expression
entered in the "Suppression Condition" edit control evaluates to a true value,
the area (and all the objects within it) is ignored.

This feature may be used to vary the outputted area's appearance or contents
depending upon the data within the report. This is done by creating two or
more areas within the same part of the group (header or footer), adding the

84 CodeReporter

different information to the different area(s), and deciding when to suppress
which area(s).

For example, if a numeric field value is negative, it may be appropriate to
display it in a red font, instead of a black font. The objects in the two
versions of the area would be identical except for that in one case the red font
would be used. Each area would contain a suppression condition.

Black font (Suppress for negative values): DBF->FIELD < 0

Red font (Suppress for positive values): DBF->FIELD >= 0

An example of suppressing an area may be found at the "end of this chapter"
on page 85.

Page Header and Page Footer Areas
The Page Header area(s) are outputted at the top of every page in the report
and are generally used for text objects containing a brief name of the report, a
date, and/or a page number.

The Page Footer area(s) are outputted at the bottom of every page in the
report and are generally used for text objects, running totals, page totals, and
page numbers.

If used, these areas appear on every page of the report unless they are
suppressed, or if one of the groups in the report has the Swap Header or
Swap Footer option enabled. These areas are created with THE AREA | NEW

PAGE FOOTER and AREA | NEW PAGE HEADER menu options.

Title and Summary Areas
The Title area(s) are the first report areas to be displayed on the first page of
the report. The Title area(s) are even outputted above the page header
area(s). Only one title area is outputted per report. As such, the Title area(s)
are generally used to display descriptive information unique to the report,
such as the report name. The title area may be thought of as a cover page to
the report.

Page Break After

If a page break is desired after the Title area, select the "Page Break after
Title" check box, found in the "Report Preferences" dialog (See the).

The Summary area(s) are the last report areas to be displayed before the page
footer on the last page of the report. Only one summary area is outputted per
report. The Summary is usually used to present final comments, and/or
numerical data which summarizes the entire report.

These areas are created with the AREA | NEW TITLE AREA and AREA | NEW

SUMMARY AREA menu options.

Chapter 4: Areas 85

Example
This example displays the contents of the NUMBERS data file which
contains both positive and negative numbers. By using two groups,
suppression conditions, and a different font, the negative values found in the
NUMBERS data file will be displayed in red, while the positive numbers will
be displayed in black.

This example illustrates some of the skills discussed in this chapter, and
incorporates some skills found in the Objects and Styles chapters. For
further information on objects and styles, see their respective chapters.

Open a New File

Once CodeReporter is running, choose the FILE | NEW menu option and select
the NUMBERS.DBF data file from the .\EXAMPLES subdirectory.
CodeReporter creates one group, "Body", with one header area.

Second Header

A second group header to display the negative numbers is created by selecting
the AREA | NEW HEADER AREA. Once the second area is created (and
automatically selected), choose the AREA | MODIFY AREA menu option to
invoke the "Modify Area" dialog and type the following expression into the
"Suppression Expression" edit control:

NUMBERS->NUMERIC >= 0

Whenever the value of the NUMERIC field is greater than or equal to zero (a
positive number) the second area will not be outputted. This is necessary
because the second area is used to output only the negative numbers --
positive numbers are outputted using the first area. Select the "OK" button
when finished.

Modifying the Area

The first area, by default, has no suppression condition and would display for
every value -- positive or negative -- in the NUMBERS data file. To set a
suppression condition for the first area, invoke the "Modify Area" dialog
while the first area is selected, or right click while the mouse pointer is above
the first area.

Type the following expression into the "Suppression Expression" edit control:
NUMBERS->NUMERIC < 0

Whenever NUMERIC is a negative number, the first group -- the one used to
output positive numbers -- is suppressed.

Adding the Fields

Use the mouse to select the "Fields" button on the button bar. Single click on
the NUMERIC field in the popup list to select it.

Position the mouse over the first area (the mouse cursor changes to the Field
cursor) and press the left mouse button to position the field (See the for more
information on placing and moving output objects).

86 CodeReporter

Select the NUMERIC field again in the popup list and place it in the second
area. When finished, select the "Done" button on the "Field Objects" list box.

Load a Style Sheet

Use the STYLE | LOAD STYLE SHEET menu option and select the
TUTORIAL.CRS style sheet. When CodeReporter prompts to override the
current style, choose the "Yes" button. For more information on creating
styles, saving and retrieving a style sheet, see the Styles chapter.

Selecting a Style

Select the NUMERIC field in the "negative" area by left clicking on it. Select
the "Style" button from the status bar and double click on the "Red" style.
This changes the style for all selected output objects. Since the NUMERIC
field in the negative area is selected, its style is set to Red.

Preview the Report

View the completed report by selecting the FILE | PRINT PREVIEW menu option.
Notice that the report displays all of the values in the NUMBERS data file,
but that now, since two areas and mutually exclusive suppression conditions
are used, the negative numbers are outputted in a red typeface.

Chapter 5: Output Objects 87

5. Output Objects
The term "output object" describes the collection of report elements that are
used to convey the information of the report to its reader. Output objects are
the "guts" of the report -- the text, fields, totals, graphics, lines, frames, etc. --
that are actually put on paper when the report is printed. Everything
outputted in the report must be done through an output object.

Static vs. Dynamic

Some output objects output the same information throughout the life of the
report, while others change with every composite record. The output objects
that stay the same -- such as lines, descriptive text, company logos, etc. -- are
called static output objects. The value and settings for these report elements
are set at report design time and do not change when the report is run.

The values for other output objects -- such as fields and totals -- can change
from each different run of the report or indeed from one composite record to
another. These constantly changing report elements are called dynamic
output objects. The values for dynamic output objects reflect the information
in the composite data file(s) -- which can change at any time.

The different types of static and dynamic output objects are discussed in-
depth later in this chapter.

Creating Output Objects
An object has a specific type associated with it; a field, a line, some text, etc.
The type of an object is specified as it is created and stays with it throughout
its life. Output objects may be placed in any report area, including the page
header/footer, the title/summary, and a group's header/footer. (See the
Groups and Areas chapters.)

Objects created in an area remain in the area unless they are moved using the
cut and paste procedure described under “Moving Objects” on page 90,
below.

Insert Mode
When an object type has been selected for addition to the report,
CodeReporter is put into insert mode. The status bar indicates this by
updating the status bar with the words "Insertion Mode:" followed by the
object type being inserted. The mouse cursor, which is changed to reflect the
appropriate object type (see Appendix C), may be used to indicate the initial

88 CodeReporter

position of the new object. Clicking with the left mouse button places an
object of the selected type.

The exact process of creating an object varies from type to type. Some
objects require an initial value, while others use default values. Listed below
are the general procedures for creating an output object. For a detailed
description of creating a specific object, see the object explanation below.

Using the Button Bar
The button bar is the easiest way to add different types of output objects.
Simply click on the object type's button and CodeReporter is put into
insertion mode for the specified type of object. All object types except
graphic objects are included in the button bar. Graphics may only be added
using the menu.

Using the Menu
The OBJECT menu option contains a list of all the output objects. Select the
appropriate menu option to put CodeReporter into insertion mode for the
specified type of object.

Creating Multiple Objects
CodeReporter continues to be in insertion mode for the specific object type
until another object type is selected. That is, once an object type is selected,
multiple objects of the same type may be added without having to re-select
the object type.

CodeReporter is moved out of insertion mode by using the "None" button, the
OBJECT | NONE menu option, or pressing the Escape key.

Objects within Objects
An output object may be placed so that it completely surrounds another
smaller output object. When this occurs, the smaller object is considered
"within" the larger object, and it may be treated as if it is a part of the larger
object.

An action performed with the larger container object affects all the object(s)
within it as well. For example, a frame object may be placed around several
field objects to provide a unique look. If a new style is selected for the frame
object, all objects within it will also use the new style. If the container object
is moved, all of the inner contained objects are also moved. If the frame
object is then deleted, all the field objects within it are also deleted.

Chapter 5: Output Objects 89

Selecting Objects
A "selected" object is one for which modifications, deletions, object
movement, etc. occur. In order to perform these actions an object must be
selected using one of the procedures described below. When an object is
selected, it is displayed in the report design screen in a red font and having
sizing handles.

Selecting an output object that contains other objects multiply selects all
objects within the container object.

Mouse

An object may be selected with the mouse by clicking upon it once. In
addition, the group and area for the object are also selected.

Keyboard

The Tab key may be used to select output objects in the selected area.
Repeatedly pressing the Tab key cycles through all objects added to the area.
The Shift-Tab key cycles backwards through the objects in the area.

Multiple Selection
It is often necessary to perform an action (such as changing a style) upon
several output objects. Multiple output objects may be "selected" and when
an action is performed once, it is applied to all selected output objects.

When more than one object is selected, the additional objects are displayed in
a red font to indicate that they are selected. Only the first object selected,
however, retains its given sizing handles.

The actions for which multiple selection apply are:

• Moving objects,

• Deleting objects,

• Cut, Copy, and Pasting objects,

• Selecting Styles, and

• Using any Alignment menu option.

Mouse

Multiple output objects may be selected by holding down the Shift key and
clicking on the objects to be selected. Any object, in any area, may be
selected in this manner. Objects may be de-selected by clicking on them a
second time while the shift key is held down.

Keyboard

Multiple output objects are selected using the keyboard by holding the Ctrl
key down and pressing the Tab key. Multiple objects in different areas may
not be selected using the keyboard.

90 CodeReporter

Deleting Objects
The selected output object or multiply selected objects may be permanently
removed from the report by pressing the Delete key, or by choosing the
OBJECT | DELETE menu option.

When an output object which contains other objects is deleted, all contained
objects are also deleted.

Once an object is deleted it cannot be recovered. If an object is deleted by
accident, it must be recreated from scratch.

Moving Objects
An output object may be moved to a new location within its area by selecting
the object with the mouse and dragging it to the desired position. Multiply
selected output objects in one or more report areas may also be positioned by
pressing the Shift key while dragging the objects.

Precise positioning may also be obtained by using the X and Y edit controls
of the "Object Settings" dialog.

Output objects may not be dragged or positioned outside of their area.
Multiply selected objects in two or more report areas have their movement
constrained by the smallest report area.

Sensitivity
CodeReporter can precisely position output objects to a single Windows
Device Unit. This is a very small and very precise unit of measurement --
often too small to line objects up concisely with the mouse.

The ALIGN | SENSITIVITY menu option invokes the "Grid Sensitivity" dialog. In
this dialog, the Horizontal Sensitivity and Vertical Sensitivity may be set to a
movement distance (in the currently selected unit of measurement). This
defines an increment with which objects are moved. The larger the
increment, the fewer number of possible coordinates an object can occupy.
With a larger sensitivity setting, it is easier to quickly position objects.

The Sensitivity setting only affects new objects being placed and objects
being moved. Output objects that are already placed in the report are not
affected by this setting.

Alignment
Multiple objects may be lined up with one another quickly using the ALIGN

menu options. The first selected output object is used as the guide for the
movement of all subsequently selected output objects.

Left and Right

Chapter 5: Output Objects 91

Alignment along the left or right edge of the first selected object is done by
choosing the ALIGN | LEFT OR ALIGN | RIGHT menu option. Multiply selected
objects in one or more report areas may be aligned to the right or left of the
first selected object.

Center

The ALIGN | CENTER menu option horizontally centers the currently selected
object within the report area. If multiple objects are selected, the center of
the first selected object is used as the center point upon which the other
objects are centered. The first object is not moved.

Top and Bottom

Alignment along the top or bottom edge of the first selected object is done by
choosing the ALIGN | TOP OR ALIGN | BOTTOM menu option. Only objects
selected in the same report area may be aligned along the top or bottom.

Space Horizontal - Vertical
Three or more objects may be moved so that there is an equal amount of
space between all objects using the ALIGN | SPACE HORIZONTALLY and
ALIGN | SPACE VERTICALLY menu options. Using the first and last selected
output objects as the end points, CodeReporter moves all of the interior
objects horizontally or vertically depending upon the option selected.

Figure 5.1 Initial Layout

Figure 5.1 shows some randomly placed output objects. Given that they are
then selected in order (i.e. Text1, Text2 and then Text3), ALIGN | LEFT moves
the output object to the positions shown in figure 5.2.

92 CodeReporter

Figure 5.2 Align Left

Using the positions in Figure 5.1 again, selecting the objects in order, and
choosing ALIGN | SPACE HORIZONTALLY, the output objects are moved to the
positions seen in Figure 5.3. Notice that the first and last selected objects
(Text1 and Text3 respectively), do not move—but the middle object (Text2)
is spaced horizontally, equidistant from both ends.

Figure 5.3 Align Horizontal

To Top - Bottom
When two output objects occupy the same space, one object is displayed and
outputted over the top of the other. CodeReporter determines which object
belongs on top of the other by the order in which the objects were created.

Chapter 5: Output Objects 93

That is, older objects are always placed below newer objects. The OBJECT |
TO TOP AND OBJECT | TO BOTTOM menu options change the ordering for a
selected object so that it may be placed on top of or beneath another object.

Cut, Copy and Paste
Objects may be moved or copied to other report areas using the EDIT | CUT,
EDIT | COPY, and EDIT | PASTE menu options. Objects that are cut or copied
are placed in the Windows clipboard until such time as they are needed again.

Invoking the EDIT | PASTE menu option changes the mouse cursor to a paste
icon. Position the cursor to the new position for the output object and click
the left mouse button.

Multiple objects may be cut, copied and pasted to and from the clipboard,
however, if the destination report area is too small to contain the output
objects, only the ones that can fit will be pasted.

Pasting from Other Applications

CodeReporter uses the Windows clipboard in the cut, copy and paste process,
so if another application has placed something in the clipboard, it may be
pasted into a report as a text object.

Graphic images from other applications may be pasted into a CodeReporter
report area as a static graphic objects.

Other applications, through their paste operation, may retrieve the text and
static graphics for CodeReporter output objects. Since CodeReporter output
objects are unique to CodeReporter, other applications may only access the
text and static graphic objects for output objects and not the actual objects.

Modifying Objects
Often it may be desirable to change some aspect of an output object, such as
its size, its style, its justification, the number of decimals used, etc. These
changes may be made for the selected object through the "Object Settings"
dialog box.

This dialog is invoked from the selected object's Object Menu.

Object Menu

Modifications specific to a particular output object are invoked from a popup
menu tied to the object. This menu contains three to four menu options,
depending upon the object's type. An Object Menu may be invoked in two
ways:

• Click and hold on an object with the right mouse button, or

• Select an object and press the Enter key.

94 CodeReporter

Figure 5.4 Object Menu

Object Settings
The "Object Settings" dialog is the primary tool for changing the attributes of
an output object. This dialog is invoked from the OBJECT SETTINGS object
menu item.

The "Object Settings" dialog is divided into sections that provide options for
modifying the output object. Since some options are unique to certain output
object types, some sections may not appear for certain output objects.

Description

The upper left section of the "Object Settings" dialog contains a description
of the object being modified. It lists the object type as well as the name,
expression, or text used by the object.

Chapter 5: Output Objects 95

Figure 5.5 Object Settings Dialog

Position

The "Position" section of the dialog contains the current Horizontal ("X") and
Vertical ("Y") coordinates of the object's upper left corner. These
coordinates are in the units of measurement selected in the "Report
Preferences" dialog. Changing the X and Y coordinates of an object changes
the position of the output object in the design screen. See Moving Objects,
above, for information on moving an object with the mouse.

An object may not be positioned so that it is completely outside of its area.

Size

The "Size" section of the dialog lists the current width and height of the
selected output object. These values are, by default, in the units of
measurement selected in the "Report Preferences" dialog. These values may
be changed to select a precise size for the output object. See Sizing, below,
for information on sizing an output object with the mouse.

When the "By Font" radio button is selected, the values in the "Height" and
"Width" edit controls are converted to approximate character units. The size
of the edit control can be changed so that it is n characters wide, and m lines
tall. These units are in average character widths, so setting the size of the
object when proportionally spaced fonts are used may not be completely
accurate.

Style

The style (typeface, color, etc.) of the output object may be changed using the
"Style" drop-down list box. Only styles that have previously been created are
in this list. For more information on styles and creating styles, see the Styles
chapter.

Justification

The text for output objects may be justified. That is, the text outputted for
the object may be placed on the left, right or center of the object.

Left Right Center

Justified Justified Justified

Object Object Object

By default, all output objects are left justified, except for numeric output
objects, which are right justified. The justification setting affects the
following object types: Fields, Static Text, Expressions, Totals, and
Calculations.

The TRIM() function is very important when justifying dBASE expressions
containing data file fields. Since data file fields contain a fixed length
(padded with spaces if it is not filled with data), justification produces little
if any results. An output object of 10 characters, for example, still contains

96 CodeReporter

10 characters no matter how it is justified -- printing 10 characters in a 10
character space is simultaneously left, right, and center justified.

If an expression object, which evaluated to a 10 character result: "SHOES
", were center justified, it would appear almost the same as if it were left
justified, since the trailing spaces (even if they are proportional) are taken
into account. If the field were trimmed, "SHOES " would be converted to
"SHOES" and then the center justification would be visually correct.

Field output objects are automatically trimmed.

Proportionally spaced fonts may be justified without using the TRIM()
function. However, the outputted text will not visually be justified correctly,
since the trailing spaces, no matter how proportional they are, still take up
space in the string.

It is recommended that the TRIM() function be used liberally whenever right
or center justification of character data is desired.

Sizing
An output object may be sized in two ways: by manually changing the value
in the "Size" edit control in the "Object Settings" dialog, or by dragging the
sizing handles on the object with the mouse.

The "Size" edit control provides precise control over the height and width of
an output object, however, it is not visual, and is time consuming.

Sizing Handles

The sizing handles are a set of black squares placed on an object's display
text that may be used to change the size of an object (see Figure 5.6). By
pressing the left mouse button on a size handle and dragging the mouse, the
size of the object is changed.

When used in conjunction with the sensitivity settings, this method provides a
rapid method for accurately changing the size of any output object.

Graphic objects may be sized either with the "Size" edit control in the
"Object Settings" dialog, or with the sizing handles. Once the new size is
set, however, the image is enlarged and/or reduced so that it fills the new
space. The aspect ratio may not be maintained.

Figure 5.6 Object Sizing Handles

Word Wrap
All output objects -- except lines, frames, and graphics -- output their
contents using the selected character set of the object's style. Most often the
output of a single object is done on a single line. However, in some cases,

Sizing
Handles

Sizing
Handles

Chapter 5: Output Objects 97

especially long field objects (including memo fields) may not fit on a single
line.

CodeReporter handles this by word wrapping objects within the size of the
output object. That is, if the text for an output object cannot be outputted
within the horizontal space allocated for the object, CodeReporter outputs as
many words (separated by spaces) as it can before the edge of the object, and
then -- vertical space permitting -- outputs the remainder in the second line of
the object.

Word wrapping does not increase the size of an object. If the text cannot
be outputted within the confines of the size of the object, the excess is
ignored.

CodeReporter, by default, creates single line output objects. If a multi-line
object is desired, change the size of the object through the "Object
Settings" dialog, or by using the object's size handles.

Look Ahead
The "Look Ahead" feature allows an object to be outputted in a group header
area with the value that it would have obtained if it had been in the group
footer. Essentially, this lets the output object obtain its value from the last
record before a group reset condition occurs. See the Header and Footer
section of the Group chapter for information on the differences between the
group header and footer.

For example, suppose an accounting report was to list the activity for the
accounts sorted by account number and date, and for each account, it was
important to list the actual range of dates covered in the account. Since the
report is sorted by date, the first record in the group (the one used for the
output of the group header) contains the first date the account was active. A
simple field object would suffice for the beginning of the activity range. The
last record before the group is reset would contain the ending activity date for
the account. A simple field object placed in the group's header set as a look
ahead object would output the ending activity date for the account.

98 CodeReporter

Look Aheads and Totals

A look ahead total object placed in a group's header contains the same value
there as it would if a simple total object were placed in the group footer.

The practical implications of this, however, is that the summation of the
group can occur before the output of the records, and the look ahead total can
be used in an interior group to output detail lines that contain a percentage of
the total.

For example, a report of the sales sorted by salesperson can display each
salesperson's percentage of total sales, simply by creating a look ahead total
object in an outer group, and in the salesperson's group footer creating a
calculation that contains a total of the salesperson's sales divided by the look
ahead total.

The following output object types can be set as look ahead objects: field,
total, calculation, expression, and dynamic graphic.

Example
As an example of look ahead output objects, this section documents the steps
necessary to create the sales report mentioned above.

Figure 5.7 Look Ahead Sketch Report

Open the Data Files

Select the FILE | NEW menu option and choose LOOKAHD.DBF for the top
master data file. This file is located in the .\EXAMPLES directory. For
simplicity, this file contains the salespersons' names and total sales.

A more complex configuration of the data files would probably have an
individual sales data file and a salesperson data file. In this configuration, a
relation would need to be established and a total output object for the

XYZ Sales Inc.
Sales Summary
Total Sales: $xx,xxx.xx

Percentage of
Total Sales

Salesperson Name Sales
Sanders, John $xxx.xx xx.xx%
Smith, John $xxx.xx xx.xx%
Thompson, John $xxx.xx xx.xx%

Chapter 5: Output Objects 99

salesperson would be used in the "Body" footer instead of simply listing the
total sales field in its header.

Creating the Report Areas

Since the report description indicates that the look ahead total object sums the
entire report, it should be placed in a header area that is only outputted at the
beginning of the report -- such as the title area. Use AREA | NEW TITLE AREA
to create the title area. Size it to about 1 inch tall.

Adding the Field Objects

In the "Body" header area, place the two fields of LOOKAHD.DBF. This is
done by selecting the "Fields" button in the design screen, select the NAME
field, move the cursor to the "Body" header area and click the mouse to place
the field. Repeat these steps for the TOTSALES field. For information on
placing data file fields in a report, see the Fields section below.

Adding the Labels

For information purposes, the title of the report and the column titles for the
salespeople should be added in the title area. Select the "Text" button in the
design screen, position the cursor in the title area and click the left mouse
button. The "Enter Text for Text Object" dialog is invoked to prompt for the
text used in the text object. Enter XYZ Sales and select the "OK" button.
Repeat this process for "Sales Summary", "Total Sales", "Salesperson
Name", "Sales", and "Percentage of Total Sales".

Adding the Totals

Totals are based upon numeric calculations and numeric data file fields.
Since the total sales are already calculated in the TOTSALES field, no
calculation is needed.

Select OBJECT | TOTAL to invoke the "Total Calculations" dialog box. Choose
the TOTSALES field and place the total output object in the title area (as seen
in Figure 5.7).

The "Total Settings" dialog is invoked to prompt for the name and reset
condition for the total object. Use TITLETOTAL for the name and, since the
total summarizes the entire report, leave the "Total Expression" edit control
blank. Select "OK". Select the "Done" button on the "Total Calculations"
dialog to remove it from view.

All objects, including total objects, are not originally set to be look ahead
objects. To make the new TITLETOTAL total object function as expected, it
is necessary to modify its object settings. Invoke the Object Menu, and
choose OBJECT SETTINGS.

A dialog similar to Figure 5.5 appears. Select the "Look Ahead" radio
button. According to the sketch report in Figure 5.7, the total sales is
displayed to two decimal places. Modify the "Number of Decimals" edit
control from '0' to '2', and select the "OK" button to save the changes.

100 CodeReporter

Add the percentage

The original sketch report lists the sales personnel, their sales, and their
percentage of the total sales. The sales percentage is obtained by dividing a
salesperson's sales by the total sales. Since the total sales were calculated in
the title area, it may be used in the lower level part of the report.

A calculation object is needed to determine the sales percentage. Invoke the
"Calculation Object" dialog by selecting the "Calculation" button on the
button bar. Select the "New Calc" button to create a new calculation. Enter
PERCENTAGE for the calculation name and LOOKAHD-
>TOTSALES/TITLETOTAL() in the "Calculation Expression" edit control.
Select the "OK" button.

The new PERCENTAGE calculation is added to the "Calculation Object" list.
Select it with the left mouse button and place the calculation in the "Body"
group. To remove the "Calculation Object" dialog select the "Done" button.

Add Object Formatting

Select the newly created calculation output object, invoke its Object Menu
(right click on the object or press the Enter key), and choose the "Object
Settings" menu option. Since the percentage displayed in the Figure 5.7
sketch report has two decimal places and is a percentage, these attributes
must be set.

Choose the "Percentage" radio button in the Numeric Type section and
change the number of decimals for the object to two. Select "OK" to close
the dialog.

If the LOOKAHD->TOTSALES output object is to be displayed as a
currency value, its settings also must be modified. Invoke the "Object
Settings" dialog and select the "Currency" radio button in the Numeric Type
section.

Viewing the Report

The report design is complete. Use FILE | PRINT PREVIEW to view the
completed report. Its contents should appear similar to the sketch report and
Figure 5.8, below.

Chapter 5: Output Objects 101

Figure 5.8 Look Ahead Output

Numbers
When an output object evaluates to a numeric value -- whether it is a numeric
field object, an arithmetic calculation, a total, or a numeric dBASE
expression -- the output of the object can be specially formatted.

Numeric Types
CodeReporter can output numeric values in four different ways, as:

• a straight number (no additional formatting),

• a currency value,

• a percentage, and

• an exponent.

Each different type displays the same value differently.

Number

All numeric values, if necessary, are outputted using thousand separators
and/or a decimal point. The characters used for these items are under the
control of the report and are set in the "Report Preferences" dialog. See
Preferences in the Customizing Reports chapter for information on changing
these values.

Currency

102 CodeReporter

A numeric value may be formatted as a currency value by selecting the
"Currency" radio button in the "Object Settings" dialog. Doing so causes
CodeReporter to include the currency symbol (default is '$') before the actual
number. The currency symbol is under the control of the report and is set in
the "Report Preferences" dialog box. See Preferences in the Customizing
Reports chapter for more information.

Percent

A number formatted as a percentage is multiplied by one hundred, and the
percent symbol ('%') is placed immediately following the number.

Exponent

A number may be converted into scientific notation and outputted in the
format n.nnnnn e xx, where n is the numeric value, and x is the exponential
value. When using this format, it is very important to set the appropriate
decimals setting (see below).

Negative Numbers
By default, CodeReporter displays negative numeric values with a minus sign
(-) preceding the value. Certain reports may require negative values to be
outputted within brackets. This is accomplished by selecting the "Use
Brackets" radio button in the "Object Settings" dialog.

Without Brackets With Brackets
-1234.56 (1234.56)

Leading Zero
Fractional numbers (those between 1 and -1) are represented by the decimal
point character and the fractional number. For some objects, it may be
desirable to have a zero placed before these types of numbers. Selecting the
"Leading Zero" radio button in the "Object Settings" dialog causes
CodeReporter to place a zero before the decimal point character.

Leading Zero No Leading Zero

 0.3 .3

33.3 33.3

-0.3 -.3

Table 5.1 Leading zero

Display Zero
By default, CodeReporter displays numeric output objects that have a zero
value. However, deselecting the "Display Zero" radio button in the "Object

Chapter 5: Output Objects 103

Settings" dialog box causes the numeric output object to be omitted from the
report if it has a zero value.

Decimals
The number of decimal places outputted for numeric objects is controlled by
the "Number of Decimals" edit control in the "Object Settings" dialog box.
The default number of decimals is zero (except for numeric field objects,
which use the field's number of decimals).

If the number to be outputted has a greater precision (more decimal places)
than allowed by the decimals setting, the outputted number is rounded.

Rounding does not affect the actual value of the number with regards to
totals. When rounding occurs, it is possible to have a column of numbers
that, due to rounding, do not add up to a total output object for that column.

Dates
Date fields in a database are stored in a way that makes them easy to sort:
January 2, 1992 is '19920102' in the database, January 3, 1992 is '19920103'
in the database and so on. However, in printed reports, it is more intuitive to
read 'January 2, 1992' or '02 Jan 1992' than '19920102'.

CodeReporter provides the flexibility of determining which format should be
used to output date objects.

Date Pictures
The output format of a date value is represented by a date picture string.
This string can contain several formatting characters and/or 'other
characters'. The formatting characters are:

• C Century. A 'C' represents the first digit of the century. If two 'C's
appear together, then both digits of the century are represented.
Additional 'C's are not used as formatting characters.

• Y Year. A 'Y' represents the first digit of the year. If two 'Y's appear
together, both digits of the year are outputted. Additional 'Y's are not
used as formatting characters.

• M Month. One or two 'M's represent the numeric digits of the month. If
there are more than two consecutive 'M's, a character representation of
the month is returned.

• D Day. One or two 'D's represent the numeric digits of day of the month.
Additional 'D's are not used as formatting characters.

• Other Characters. Any character which is not mentioned above is
placed in the date string when it is outputted.

July 4, 1776, for example, would be outputted differently using different
picture formatting:

104 CodeReporter

FORMAT OUTPUT
MMMMMMMM DD, CCYY July 04, 1776

YY/MMMMMMMM/DD 76/July /04

MM DD YY CC 07 04 76 17

Default Date Format
CodeReporter uses a default picture format of MM/YY/DD for all objects
outputting a date value. The report's default date format may be modified by
changing the "Default Date Format" edit control in the "Report Preferences"
dialog box. The default date format may also be overridden on an object-by-
object basis, by changing the "Date Format" edit control (within the "Object
Settings" dialog -- not shown in Figure 5.5.)

Using the Default Date Format

The default date format is automatically used when a date output object is
created. The object retains the default date format throughout its life (unless
the object's "Date Format" edit control is changed) even if the default date
format for the report is changed at a later time.

If an object's date format is completely deleted and the "OK" button is
selected, the date format reverts to the current default date format.

Display Once
In some cases it may be desirable to output an object occasionally -- when its
value changes -- instead of outputting it every time its group resets. For
example, Figure 5.9 displays a simple report displaying the contents of a data
file. Instead of outputting the same month for each line of the report, the
month is only outputted when it changes.

This type of selective output can be accomplished by using the DISPLAY ONCE

Object Menu item. This invokes the "Object Display Suppression." Select
the "Display Once" check box and enter an expression to be used to suppress
the output of the object. This expression is evaluated when the group reset
condition occurs, and if its value has changed from the previous reset
condition, it is outputted.

To vary the output using a true/false condition, see the Suppressing an
Area section in the Areas chapter.

The DBF->MONTH output object in Figure 5.9 uses the 'Display Once'
option with a suppression expression containing the same value as outputted:
DBF->MONTH. When the first 'January' entry is outputted, the month is
outputted. The second entry, however, does not change the value of DBF-
>MONTH's display once condition, and so the month is not outputted.

Chapter 5: Output Objects 105

Figure 5.9 Display Once Example

To change the display once condition for an object or to remove it, select the
DISPLAY ONCE Object Menu option to invoke the "Object Display
Suppression" dialog box. Make the desired changes to the suppression
condition, or deselect the "Display Once" check box to display the output
object every time the group resets.

All output object types may be set to display once.

Text Objects
The simplest type of output object is the static text object. A static text
object consists of a string of alphanumeric text which is reproduced verbatim
in the report.

As such, they are often used to identify the report (such as a title), to identify
report elements that may not be totally clear, or to bring attention to a part of
the report.

CodeReporter is put into insertion mode for Text objects by selecting the
OBJECT | TEXT menu item, or the "Text" button. When a text object is placed,
the "Enter Text for Text Object" dialog is invoked.

106 CodeReporter

Text objects are also created when text is placed in the Windows clipboard
from another application, such as a word processor, and CodeReporter's EDIT

| PASTE menu option is selected.

Lines and Frames
Another way to bring attention to a section of the report or to set it apart
from other sections is to use a static line or frame. Lines can either be
horizontal or vertical. Frames are simply rectangles which may be filled, or
may have rounded corners. See Figure 5.10 for an illustration of the different
types of lines and frames.

Lines
The creation of a horizontal line is accomplished by selecting the "H-Line"
button (or the OBJECT | HORIZONTAL LINE menu option) and clicking the
mouse where the line is to appear. In the same manner, a vertical line is
created using the "V-Line" button (or the OBJECT | VERTICAL LINE menu
option).

Lines have a default length and width which may be modified by using the
OBJECT SETTINGS Object Menu selection to invoke the "Object Settings"
dialog box. This dialog is used to increase the thickness of the line, and to
change its color. (See Line Thickness, below, and the Color sub-section, also
below.)

Line Thickness

The thickness of a line is set in the "Thickness" edit control of the "Object
Settings" dialog. The thickness of lines are set in pixels -- the smallest unit
available on a computer screen.

Line Length

The length of a line may by changed by using the line's sizing handles to drag
it to the new length, or by changing the value in the "Length" edit control of
the "Object Settings" dialog.

Frames
Frames are a special type of line object. Frames are rectangles which may be
used to offset a special piece of information in a report.

A frame object may be created by selecting the "Frame" button from the
button bar, or by selecting the OBJECT | FRAME menu option. When a frame
is created, it has a default height and width, has square corners and is hollow.
The frame's sizing handles may be used to change the height and width.

The thickness of the line used to draw the rectangle may be modified by
changing the "Thickness" edit control in the "Object Settings" dialog.

Corners

Chapter 5: Output Objects 107

The corners of frame objects are square by default. If rounded corners are
desired, select the "Rounded Corners" radio button in the "Object Settings"
dialog.

Filled

A filled frame is much like a very thick line. The inside of the rectangle is
filled with the color of the style used when the frame is created. The
difference between a filled frame and a very thick line is that a frame may be
sized vertically and horizontally using the sizing handles, while a line may
only be sized in one direction.

A frame may be filled by selecting the "Filled" radio button in the "Object
Settings" dialog box.

De-selecting the "Filled" or "Rounded Corners" radio button makes the frame
hollow or have square corners, respectively.

Color
Lines and frames may have a color associated with them in the same manner
as other output objects, by selecting a style that contains the desired color.
Lines and frames only use the color portion of the style and ignore the
typeface, the point size, etc. See the Styles chapter for more information on
creating and modifying styles.

Objects Within
Frames (and thick lines) are often used to visually group output objects
together. As mentioned in Objects Within Objects in the Creating Objects
section, above, an object that completely surrounds another object is said to
contain the second object.

Frames often do this, since they are usually placed around other output
objects. When using filled frames, two items should be noted:

1. The white rectangle that is visible around an output object placed within
the frame (in design mode) is not outputted when the report is outputted.
It merely shows the outline and sizing handles of the interior output
objects.

2. Output objects within a filled frame should not use a style that has the
same color as used to fill the frame. Black text on a filled black frame,
for example, results in the text being "invisible." This often occurs
when the Style popup menu is used to select a style for the frame --
since all interior objects are also selected when the frame is selected,
their style is set to the same style as the frame.

Graphics
CodeReporter may include graphical elements into reports either statically or dynamically.
These graphics may be anything from a company logo to a series of personnel photos.

108 CodeReporter

Figure 5.10 Lines and Frames

Average (boring) reports can be made visually exciting by the inclusion of
graphical elements. For example, through the use of suppressed areas and
different graphical elements the "bottom line" of a financial report could
display a "thumbs-up" or a "thumbs-down" depending upon the numeric
outcome.

CodeReporter currently supports Windows bitmap graphics in three ways:

1. statically with bitmaps pasted in the report,

2. statically by referencing a file name, and

3. dynamically using a data file field which contains a file name.

Smaller bitmaps are generally outputted better than larger ones. Due to
the scaling involved in shrinking high resolution bitmap images (such as
scanned images), it is recommended that low resolution images be used.

Creating a Graphic Object
Graphic objects are created with the OBJECT | GRAPHIC menu option, or by
pasting a graphic element from the clipboard. The former method is used to
create graphic objects with a minimum of additional disk space necessary.
The later creates a static graphic object that is actually stored within a
CodeReporter-created bitmap file.

Pasting Graphics

Other Windows applications, such as Windows Paintbrush, allow users to
create customized bitmap images. Once the image is designed, it may be
placed in the Windows clipboard (usually with the application's cut or copy
command) where it is accessible to CodeReporter. Once in the clipboard, this
image may be pasted into a report as a static graphic object using the EDIT |
PASTE menu option.

Vertical Line
Horizontal Line

Filled, square-corner
Frame

Hollow, rounded-corner Frame

Chapter 5: Output Objects 109

The bitmaps for pasted graphic objects are displayed in the report design
screen.

Bitmaps that are pasted into a report are stored within an external bitmap
file. Since this bitmap file is created without user input, it is given a unique
-- and generally obscure -- name. If the pasted bitmap is already saved in a
file using another application, this process creates an unnecessary
duplicate file.

It is usually more appropriate to use the source application to save the
bitmap as a bitmap file (*.bmp) and use the OBJECT | GRAPHIC menu option
to create a graphic output object that accesses the file.

Using the menu

The OBJECT | GRAPHIC menu option invokes the "Specify Graphic Object
Type" dialog where the two types of objects may be selected.

When the "Static Graphic" check box is chosen and a graphic element is
placed, CodeReporter prompts for the file name of the bitmap file and
displays the bitmap within the CodeReporter design screen. CodeReporter
only stores the specified file name within the report file, and not the actual
bitmap image. This allows the report designer the flexibility of changing a
graphic object in a report simply by altering the referenced bitmap file.

Figure 5.11 Specify Graphic Object Type Dialog

The "Dynamic Graphic" check box, when chosen, enables the drop down
combo box which contains all the field names in the current composite data
file. Once a field name is chosen, the graphic object may be placed. Since
the referenced field does not contain a value until the report is outputted (and
then it may constantly change), CodeReporter displays the dynamic graphic
object as a regular field in the design screen.

It is important to appropriately size a dynamic graphic output object, since
CodeReporter stretches or reduces the bitmap so that it entirely fits within
the specified size. In addition, ensure that all bitmaps referenced by the
field are of the same size. Failure to do so can cause some graphic
objects to be displayed "correctly" while others may be distorted.

110 CodeReporter

Scaling Graphic Objects
Graphic images within CodeReporter are automatically scaled to the size of
the output object. That is, bitmap images that are larger than the current size
of the output object are reduced, while images that are smaller are enlarged.

This activity occurs on each axis. If an image that is tall and skinny is pasted
into a square graphic object, the image is made short and fat. CodeReporter
does not maintain an image's aspect ratio, but manipulates the image to fit the
size of the graphic object.

The size and the scaling of a graphic object is controlled in the same manner
as a regular output object: through the "Object Settings" dialog, or by the
sizing handles.

Figure 5.12 Static Graphic Object

Fields
Field objects reflect the contents of the composite record at the time of the
area's group reset condition. If one or more fields need to be combined or
manipulated to arrive at the "appropriate" output -- such as combining first
and last name fields -- an expression output object should be used.

Placement
Fields from the composite data file are added to the report from the "Field
Objects" floating list box, which is invoked from the OBJECT | FIELD menu
item or the "Field" button.

Field objects may be placed individually, or several field objects may be
placed at the same time.

Single Selection

A single field may be added to the report by using the "Field Objects" floating
list box to select the desired field, using the mouse to move the cursor to the

Chapter 5: Output Objects 111

desired spot, and clicking the left mouse button. The field, with an
approximate size and default settings, is placed in the desired spot.

Multiple Selection

When two or more fields are selected in the "Field Objects" list box, the
"Field Layout" dialog box is invoked as the objects are placed in the design
screen. Shown below, this dialog provides several options as to the
placement of the output objects.

Figure 5.13 Field Layout Dialog

Layout Direction

CodeReporter places the output objects either left to right or top to bottom
from the insertion point, depending upon the "Layout Direction" radio
buttons. These settings also take into account the "Wrap" check box setting.

Wrap

As the output objects are being inserted, CodeReporter checks to see if any
object extends beyond an edge of the report area in which they are placed.
Normally in this case, the object that extends beyond the edge is sized so that
it fits within the area, and insertion is terminated.

However, if the "Wrap" check box is set, CodeReporter changes the insertion
point back to the beginning coordinates and moves down or to the right
(depending upon the horizontal or vertical setting, respectively) and continues
to insert the fields. If it continues to run out of room in the area (if it hits the
lower right corner), CodeReporter may choose to vertically enlarge the area
so that all output objects may fit.

CodeReporter vertically enlarges the area if the "Layout Direction" radio
button is set to be vertical and the "Wrap" radio button is not selected, or if
the "Layout Direction" is horizontal and the "Wrap" radio button is selected.

112 CodeReporter

"Wrap" is set by default.

Labels

If the "Labels" check box is set, CodeReporter also inserts text objects
containing the field names in a column to the left of the field objects.

Vertical and Horizontal Spacing

The space between the inserted field (and label) output objects is controlled
by the "Vertical Spacing" and "Horizontal Spacing" edit controls. As a
default, the spacing is set to .1 inch, but it may be changed to any value. This
is a useful option for quickly placing output objects in reports which may be
outputted in an environment other than Windows where precise positioning is
important.

Memo Fields
Memo fields, which have their contents stored in a separate memo file,
behave exactly the same as regular fields. It is important to note that:

• if the memo field is blank, the object is displayed with an empty value,

• if the memo does not fill the entire size of the output object, the excess
space is wasted, and

• if the memo is larger than the size of the output object, the excess
information is ignored.

Expressions
dBASE expressions which are needed only once or twice may be outputted
within the report using an expression output object. Simply put, an
expression object is used to output an evaluated expression in the report.

For example, if a data file has separate first name and last name fields, but
within the report they are to appear in the format "Smith, John", an
expression output object containing the following expression could be used.

TRIM(DBF->LAST_NAME)+', '+DBF->FIRST_NAME

Creating
CodeReporter is put into insertion mode for expression output objects by
selecting the OBJECT | EXPRESSION menu option or by selecting the
"Expression" button. The mouse cursor then changes to indicate insertion
mode is active.

Position the mouse cursor within a report area and click the left mouse button
to place an expression output object.

CodeReporter prompts for the initial expression for the expression output
object using the "Easy Expression" dialog box (see the Expressions chapter

Chapter 5: Output Objects 113

for information on the "Easy Expression" dialog). Once an expression is
entered, select the "OK" button to complete the creation.

Calculations
A calculation performs a numerical or character-based computation that is
used in the report. These computations take the form of dBASE expressions.
In many cases a computation is used simply to add one or more data file
fields together, but it may be more complex involving composite data file
fields and/or dBASE functions. The calculation may be thought of as a
"short hand" way of referring to the computation it contains.

A calculation may be used in zero, one or multiple calculation output objects.
In addition once a calculation is defined, it may be used in any expression
within the entire report -- including sort expressions, query expressions,
expression output objects, relation expressions, etc.

For example, a calculation could figure out an employee's total pay using the
following formula:

PAY->REG_HRS*EMP->RATE + PAY->OT_HRS*EMP->RATE*1.5

or format an employee's first and last name using the following computation:

TRIM(EMP->F_NAME)+' '+EMP->L_NAME

If a report was simply a payroll report that listed the employees' names and
gross pay, it might not be necessary to define a calculation for the formula --
the expression might just as well be put in its own expression output object.
However, if the report also needed to display the total of all salaries paid
during the report or do other computations on the employee's total pay, a
calculation is suggested.

By using a calculation instead of retyping the computation in separate
expression objects, the report design time is shorter, and the report is easier to
modify and maintain.

If an expression is used more than once in a report, it is recommended that
a calculation be created.

A calculation may also include one or more calculations. That is, you may
nest one calculation within the definition of another calculation.

For example net pay is calculated from the total pay minus any deductions.
The calculation for net pay might then be:

TOT_EMP_PAY() - DEDUCT()

where TOT_EMP_PAY() and DEDUCT() are previously defined calculations.

Creating Calculations
A calculation is created by invoking the "Calculation Object" dialog box and
selecting the "New Calc" button. The "Create Calculations" dialog is
invoked.

114 CodeReporter

A calculation has two elements, the calculation name and the calculation
expression. The calculation name is a character string that is used to
represent the computation.

It is this name that appears within the "Calculations" list box in the "Easy
Expression" dialog. The calculation expression, as described above, may be
entered into the "Calculation Expression" edit control.

The name of a calculation may not have spaces within it. In the event that
the calculation name is entered with spaces, CodeReporter uses the
characters up to the first space as the name of the calculation.

Even though calculations are created through the OBJECT menu, it is not
necessary to have a calculation output object for every calculation. In fact, it
is very common to have calculations that are used only within other
calculations, expressions, and totals.

Deleting Calculations
Calculations are deleted from the "Calculation Object" dialog box. To delete
a calculation, select its name within the dialog's list box and select the "Delete
Calc" button. This removes the calculation, all calculations/totals that use
the calculation, and all output objects that use any of the removed
calculations and totals.

Deleting a calculation can quickly remove many related elements in a
report. Delete with care.

Calculation Objects
Once a calculation is created, a calculation output object may be placed by:

1. selecting the desired calculation name within the "Calculation Object"
dialog box,

2. positioning the mouse cursor to the desired spot within a report area,
and

3. single clicking the left mouse.

CodeReporter is automatically removed from insertion mode once the
calculation object is placed.

Deleting a calculation output object does not delete the calculation upon
which it was based.

Totals
A total gives the report designer the ability to summarize the numerical data
obtained from a numeric calculation or numeric data file field and output it
within the report. Essentially, a total is an output object that retains its value
from one composite record to another -- using each composite record to
update its value.

Chapter 5: Output Objects 115

Totals are based upon previously created numeric calculations and numeric
data file fields. As a result, multiple totals which are based upon the same
information may use the same calculation.

Unlike calculations, a total may not exist without an object having been
created for it. This is a direct result of the nature of totals: a total achieves
its value at a certain place and time within the report. For example, a total of
sales for each employee changes its value from one employee to the next. A
reference to this total within the report title area, for example, would display
a non-existent value since at the beginning of the report the total has not yet
obtained a value.

A total output object within report wide expressions, such as the query
expression, makes no sense, since the value of the total is not calculated until
the report is outputted. In this case, since a report is based on the composite
data file, an attempt to limit the composite data file based upon the contents
of the report, creates a logical contradiction.

Totals are properly placed within the group footer for the subset of data it is
totaling -- unless it is a look ahead total, in which case it may be placed
within the group header area.

Creating a Total
A total output object is created through the "Total Calculations" dialog box
which is invoked by selecting the OBJECT | TOTAL menu option or the "Total"
button in the report design screen.

The "Total Calculations" dialog box contains a list box which is filled with
previously created numeric calculations and previously created totals. Total
output objects are placed within the report in the same manner as
calculations:

1. select the desired calculation, total name, or numeric data file filed within
the list box,

2. position the mouse cursor within the desired destination report area, and

3. click the left mouse button.

As an output object is placed, the "Total Settings" dialog (Figure 5.14) is
invoked.

116 CodeReporter

Figure 5.14 Total Settings Dialog

Name

Totals, like calculations, may be used in any dBASE expression within
CodeReporter; and thus each new total requires a unique name. This name
defaults to "TOTALn", where n is an ascending number used to keep the total
name unique. This name may be modified to be more descriptive of what the
total is actually totaling.

When the total is used within other expressions, it is this name, followed by a
set of parentheses (), that identifies which total is to be used.

If the value of a total is needed in a dBASE expression, but does not need
to be outputted within the report, the total output object may be "hidden"
by changing its size so that it is too small to display any of its contents.

Types
The actual process involved in updating the total's value from composite
record to composite record depends upon the use of the total. A total may
maintain an arithmetic sum, an average, a maximum value, or a minimum
value.

Chapter 5: Output Objects 117

Sum

A sum total adds the number returned from the evaluated calculation, total or
numeric field for each record to its preceding value.

If a total is used to simply count the number of records between total reset
conditions, base the total output object upon a calculation with a constant
value of one (1).

Average

An average total stores the arithmetic mean for the evaluated calculation,
total, or numeric field. This mean (or average) is obtained by taking the sum
of the values for the records and dividing it by the number of records
encountered.

Maximum

A maximum total stores the largest number encountered for the evaluated
calculation, total, or numeric field.

Minimum

A minimum total stores the smallest number encountered for the evaluated
calculation, total or numeric field.

Reset Expression
The total reset expression is used to create totals that summarize subsets of
information within the composite data file. For example, the total that
describes the amount of sales made by a certain salesperson is a total for the
salesperson's subset of sales.

Usually, the total reset expression is the same as used in the reset expression
for the group with which the total is logically related. For example, a report
that lists sales may be sorted and grouped by months. A total of the sales for
a month would have a total reset expression of DBF->MONTH -- which
would be the same as the month group's expression. See Figure 5.15.

The total reset expression need not be the same as the group reset expression
for the group it is within and may reset in an entirely different manner.

Subtotals

The total reset expression dictates when a total is reset to its initial value.
The reset expression is evaluated for each composite record in the composite
data file, and when the value of the evaluated reset expression changes, the
total is reset so that a new accumulation may begin.

The value with which the total is reset varies, depending upon the type of
total. Sum and average totals are reset to zero, while the maximum and
minimum totals are reset to the smallest and largest numbers possible
(respectively).

118 CodeReporter

Report-wide Totals

A report wide total, or grand total, is achieved by using an empty total reset
expression. That is, the total is only reset when the report begins, so when
the total object is outputted in the report summary (or title if it is a look ahead
total), it totals the entire report.

Running Totals

A total output object that is placed in the same area as the information that it
is totaling is called a running total. Since the total is constantly being
updated, each time the group resets (and the output objects within the group's
areas are outputted) the total output object contains a new value.

Deleting a Total
Deleting a total output object deletes the total upon which the object is based.
Doing so also removes all other totals, calculations, expressions, and objects
that contain the total. This can cause further deletions, and cause a cascading
effect which might result in the ruination of a report. Delete total objects
with care.

Look Ahead Totals
Look ahead totals are used to output the summary of a subset before the
detail lines of the subset are actually outputted. This important concept,
along with an example of using look aheads, is illustrated in the Look Ahead
section of this chapter (above).

Figure 5.15 Total Sample Report

Conditional Totals
Totals may be associated with a dBASE expression that determines under
which conditions the total is to be accumulated. By setting up a conditional

Chapter 5: Output Objects 119

accumulation condition, the total output object may update its value on some
composite records in the composite data file, while ignoring others. Perhaps
it is important to only accumulate the total when a field contains a certain
value, or only accumulate the total for a master record related to several
scanned records. Using a conditional total makes this possible.

A conditional accumulation may be established by invoking a total output
object's Object Menu and selecting the CONDITIONAL TOTAL menu option.
This action invokes the "Conditional Total" dialog, in which the total's
condition may be entered.

Total Condition

The "Total Condition" entry window is used to enter the dBASE expression
which is used to determine when the total is accumulated. This expression
may evaluate to any dBASE type, excluding memo.

Figure 5.16 Conditional Total Dialog Box

The "Logical Condition" and "Changed Value" radio buttons determine how
the total condition is used to selectively update the total's value.

Logical Condition

If the "Logical Condition" radio button is selected and the total condition
(which must evaluate to a logical value) evaluates to a .TRUE. value, the total

120 CodeReporter

is updated with the contents of the current composite record. If the
expression evaluates to a .FALSE. value, the current composite record is
ignored.

Changed Value

If the "Changed Value" radio button is selected, the total is updated only
when the evaluated total condition changes. For example, if there is a scan
relation, the contents of the master data file are repeated in the composite
data file for each record in the related slave data file. A total output object
that depends upon a field within the master data file would be accumulated
"incorrectly" since the master data file field would be repeated several times.

Setting the "Changed Value" radio button and using the total condition that
corresponds to the master data file's record change (or the master expression
in the scan relation), the total would be accumulated "correctly."

Chapter 6: Columnar Report Wizard 121

6. Columnar Report Wizard
CodeReporter provides a quick and easy automatic report design option
through the "Columnar Report Wizard" dialog. This dialog provides a
means of rapid report creation -- including the insertion of fields in the
relation set, the creation of group headers and footers, and automatic
totaling and subtotaling of numeric fields.

Figure 6.1 Columnar Report Wizard

Invoking Report Wizard
The "Columnar Report Wizard" dialog box is invoked from the REPORT |
COLUMNAR REPORT WIZARD menu option. If the current report already
contains some output objects, they are destroyed when the "Columnar Report
Wizard" dialog box is invoked. Before doing so, however, CodeReporter
prompts the user to save the file or cancel the columnar report.

122 CodeReporter

Creating a Report
The "Columnar Report Wizard" dialog is used to add selected fields to the
report, to create subtotals of numeric fields, and to query and sort the
composite data file. Once the report is defined within the "Columnar Report
Wizard" dialog, use the "OK" button to create the report. The "Cancel"
button may be used to exit the dialog without creating a report.

Adding Fields
All the fields of the composite data file are listed in the "Fields" list box.
Fields can be multiply selected in the "Fields" list box and added to the report
by selecting the "Add" button. "Add All" automatically adds every field in
the composite data file to the report.

The fields are placed within the report, from left to right, in the order they
appear in the "Included Fields" list box. If a field is added to the "Included
Fields" list box out of the desired order, or was added in error, the "Remove"
and "Rem. All" may be used to remove the field (or all fields) from the report.

If more fields are inserted within the report than may fit upon one line, the
field that exceeds the page margin is truncated, and the excess fields are
placed on a second line.

Subtotals
The report created by the "Columnar Report Wizard" dialog automatically
creates report-wide totals for all numeric fields and places them in the report
summary area. If subtotals are desired for subsets of the composite data file,
they may be created by defining the subset for which they are associated.

This is done by using the "Add" button in the "Group Reset Expressions for
Subtotals" section of the dialog. The "Add" button invokes the "Easy
Expression" dialog in which a group expression may be entered to describe
the subset for which the subtotal is desired. The "Columnar Report Wizard"
automatically creates a group (named "Groupn" where n is the number of the
group) for this expression and places the subtotals within this group's footer
area.

The subtotal groups are added to the top of the "Subtotal On" list box. The
groups, therefore, are added from the innermost to the outermost.

If a group is added in the wrong place, either use the "Remove" button and
"Add" button to correct the mistake, or, once the report is created, modify
the group's position.

Chapter 6: Columnar Report Wizard 123

Sorting and Querying
The sort expression and query expression for the report may be specified
within the "Columnar Report Wizard" dialog using the "Sort Expr." and
"Query Expr." buttons. These buttons invoke the "Easy Expression" dialog
in which the expressions may be entered. For information on sorting and
querying the composite data file, see .

The sort and query expressions previously defined are reflected in the
"Easy Expression" dialogs. If these expressions are no longer
appropriate, they may be removed by deleting the expression in the "Easy
Expression" dialogs.

Example
As an example of a simple columnar report, the following demonstrates the
steps necessary to create a sales report for the 'ATHA' company, including
subtotals for every store.

Locate SALES.DBF
The data file necessary for this sales report is SALES.DBF, which is located
in the .\EXAMPLES directory. Use the FILE | NEW menu option to create a
new report, and the "Select Data File" dialog to locate SALES.DBF.

For simplicity sake, this report does not include relations to the
COMPANY.DBF and STORES.DBF data files. As a result, the data for the
company and store that generated the sale are outputted as stored in
SALES.DBF -- as codes.

Report Wizard Dialog
Begin the report wizard process by selecting the REPORT | COLUMNAR

REPORT WIZARD menu option to invoke the "Columnar Report Wizard"
dialog.

Add Fields

Most of the fields of the SALES.DBF data file are to be included within the
report. Since the report is primarily interested in the financial aspects of the
stores and not the actual products sold, PRODCODE is not to be included.

The fields of SALES.DBF (COMPID, STOREID, AMOUNT, and
PRODCODE) are all listed within the "Fields" list box. Single click on the
"Add All" button to add all of the fields to the "Included Fields" list box.
PRODCODE, which was also added, should be removed by selecting it from
within the "Included Fields" list box, and single clicking the "Remove"
button. This removes the field from the "Included Fields" list box and adds it
again to the "Fields" list box.

124 CodeReporter

Add Subtotals

The report specification indicates that subtotals are desired for every store. A
logical subset of the composite data file is created by the STOREID field in
the same manner that the LOC created a subset within Figure 3.1 in the
Groups chapter.

The expression that describes this subset is:
SALES->STOREID

(Normally, the expression would also include the major subset of COMPID,
but since a query is going to be used to limit the company to 'ATHA', the
above expression is sufficient).

Use the "Add" button within the "Group Reset Expressions for Subtotals"
area to invoke the "Easy Expression" dialog and enter this expression. The
expression should appear within the "Group Reset Expressions for Subtotals"
list box.

Sorting

The records within SALES.DBF most likely are not entered in a sorted order
for every store. It is therefore necessary to sort the data file. This is
accomplished by selecting the "Sort Expr." button and entering the sort
expression:
SALES->STOREID

The sort expression may safely ignore the COMPID, the major subset of the
sales data file, since the specification of the report indicated only the 'ATHA'
company sales were to be included within the report.

Query

The limiting of the composite data file is done with a query expression
SALES->COMPID='ATHA'. Select the "Query Expr." button and enter the
expression in the "Easy Expression" dialog.

Viewing the Report
After the sort and query expressions are entered, the columnar report is
created by selecting the "OK" button. Display the report by selecting the FILE

| PRINT PREVIEW menu option. The fields and totals correctly appear within
the output window.

Polish
The instant report is by no means ready to be published. There are several
things that may be done to "polish" the report -- including altering the styles
and typefaces, adding descriptive labels to the totals, adding report titles, etc.
The instant report may be modified in the same manner as any report created
in the standard manner.

Chapter 6: Columnar Report Wizard 125

7. Expressions
Much of the interaction between CodeReporter and the report designer is
done through the use of dBASE expressions. dBASE expressions are,
conceptually, a macro language used to describe some operation or identify
some information.

dBASE expressions are much like arithmetic equations. Values may be
added together to get a result, equations can be tested for validity (true or
false), etc. Like arithmetic, dBASE expressions follow several rules. Unlike
arithmetic which only deals with numeric values, dBASE expressions have
several different types of values, including characters and dates.

Those familiar with dBASE or dBASE expressions may skip ahead to the
Section.

General dBASE Expression Information
All dBASE expressions return a value of a specific type. This type can be
Numeric, Character, Date or Logical.

A common form of a dBASE expression is the name of a field. In this case,
the type of the dBASE expression is the type of the field.

Field names, constants, and functions may all be used as parts of a dBASE
expression. These parts can be combined with other functions or with
operators.

Example dBASE Expression:
UPPER(DBF->FIELD_NAME)

Returns

In arithmetic, 1+2 is considered a statement that represents the same value as
3. 4x3ö6 is the same as 2. In dBASE terminology, these arithmetic
statements are said to return a value. The numbers are combined in an
arithmetically consistent fashion and the result is obtained.

Equations

If a student were given a true or false test and he/she were told to evaluate
1+2 = 5, he/she would correctly mark it false. 1+2=3 should be marked as
true. Both sides of the equals sign are evaluated separately and their return
values are compared. In the first case 1+2 evaluates to 3 and 5 evaluates to
5. The statement that 3 is the same as 5 is incorrect, so it is considered false.
With 1+2=3, however, both sides evaluate to 3. dBASE expressions where

126 CodeReporter

both sides of the equation are provided are called logical expressions.
Logical expressions use the relational operators listed below.

Field Name Qualifier
Since most reports have a multitude of data files, it is necessary to qualify a
field name in a dBASE expression by specifying the data file. Observe above
that the first part of a field name, the qualifier, specifies a data file alias. The
data file alias is usually just the name of the data file. The "->" terminates the
data file name, and marks the beginning of the actual field name.

dBASE Expression Constants
dBASE Expressions can consist of Numeric, Character or Logical constants.
However, dBASE expressions which are only made up of constants are
usually not very useful. Constants are usually used within a more
complicated dBASE expression.

A Numeric constant is a number. For example, 5, 7.3, and 18 are all valid
dBASE expressions containing Numeric constants.

Character constants are characters with quote marks around them. 'This is
data', 'John Smith', and ' "John Smith" ' are all examples of dBASE
expressions containing Character constants. If you wish to specify a
character constant with a single quote or a double quote contained inside it,
use the other type of quote to mark the Character constant. For example,
"Man's" and ' "Ok" ' are both legitimate Character constants.

Unless otherwise specified, all dBASE Character constants in this manual
are denoted by single quote characters.

Constants .TRUE. and .FALSE. are the only legitimate Logical constants.
Constants .T. and .F. are legitimate abbreviations.

A date constant may be obtained using the STOD() dBASE function with a
character constant as a parameter.

dBASE Expression Operators
Operators like '+' , ' * ', and '<' are used to manipulate constants and fields.
For example, 3+8 is an example of a dBASE expression in which the Add
operator acts on two numeric constants to return the numeric value 11.

The values upon which an operator acts must have a type appropriate for the
operator. For example, the divide '/' operator acts upon two numeric values.

Chapter 7: Expressions 127

Precedence
Operators have a precedence which specifies operator evaluation order. The
precedence of each operator is specified in the following tables which
describe the various operators. The higher the precedence, the earlier the
operation will be performed. For example, 'divide' has a precedence of 6 and
'plus' has a precedence of 5 which means 'divide' is evaluated before 'plus'.
Consequently, 1+4/2 is 3.

Evaluation order can be made explicit by using brackets. For example, 1+2 *
3 returns 7 and (1+2) * 3 returns 9.

 Operator Name Symbol Precedence
 Add + 5
 Subtract - 5
 Multiply * 6
 Divide / 6
 Exponentiation ** or ^ 7

 Table 7.1

Character Operators

There are two character operators, named "Concatenate I" and "Concatenate
II", which combine two character values into one. They are distinguished
from the Add and Subtract operators by the types of the values they operate
on.

 Operator Name Symbol Precedence

 Concatenate I + 5
 Concatenate II - 5

Table 7.2

Examples:

'John ' + 'Smith' becomes 'John Smith''

ABC' + 'DEF' becomes 'ABCDEF'

Concatenate II is slightly different as any spaces at the end of the first
Character value are moved to the end of the result.

'John' - 'Smith ' becomes 'JohnSmith ‘

''ABC' - 'DEF' becomes 'ABCDEF’

''A ' - 'D ' becomes 'AD '

128 CodeReporter

Relational Operators

Relational Operators are operators which return a Logical result (true or
false). All operators, except Contained Within, operate on Numeric,
Character or Date values. Contain Within operates on two character values
and returns true if the first is contained within in the second.

 Operator Name Symbol Precedence

 Equal To = 4

 Not Equal To <> or # 4

 Less Than < 4

 Greater Than > 4

 Less Than or Equal To < = 4

 Greater Than or Equal To > = 4

 Contained Within $ 4

 Table 7.3

Examples:

'CD' $ 'ABCD' returns .T.

8<7 returns .F.

5 = 4 + 1 returns .T.

Logical Operators

Logical Operators return a Logical Result and operate on two Logical values.

 Operator Name Symbol Precedence

 Not .NOT. 3

 And .AND. 2

 Or .OR. 1

Table 7.4

Examples

.NOT. .T. returns .F.

.T. .AND. .F. returns .F.

.NOT.(1+2=3) returns .F.

Chapter 7: Expressions 129

Easy Expression Entry
In many parts of CodeReporter, the report designer is prompted for a dBASE
expression. For example: sorting, querying, and relating data files all require
one or more dBASE expressions.

In the instances where an expression is necessary, CodeReporter generally
provides two ways this expression may be obtained: direct entry or through
the "Easy Expression" dialog.

Figure 7.1 Create Calculation Dialog

Figure 7.1 above, illustrates a typical request for a dBASE expression. The
"Create Calculation" dialog includes an area ("Calculation Expression" edit
control) in which the expression may be directly typed. To use this area,
simply position the cursor within the area and enter the appropriate dBASE
expression.

This dialog also shows an entry point for the "Easy Expression" dialog -- the
"Easy Expr." button. Pressing this button invokes the "Easy Expression"
dialog for point-and-click entry of a dBASE expression. Upon completion,
the expression entered in the "Easy Expression" dialog is placed within the
"Calculation Expression" edit control.

Easy Expression Entry Dialog
The "Easy Expression" dialog provides the report designer with a point-and-
click way to build a dBASE expression. The "Expression" edit control
contains the expression as it is constructed. Double clicking upon any of the
dialog box's list boxes inserts that item into the expression at the current
position of the insertion caret. dBASE operators may be inserted by single
clicking the button containing the desired operator.

The advantage of using the "Easy Expression" dialog lies in the speed in
which an expression may be constructed. Fields are automatically added with
their data file qualifiers, functions are automatically added with their

130 CodeReporter

parentheses and commas, etc. The list boxes contain a list of every field in
the composite data file, every supported dBASE function, and all the created
calculations and totals.

In addition, descriptive information can be obtained about any field or
function by single clicking on the item. The descriptive information is
displayed within the bottom edit control.

Figure 7.2 Easy Expression Dialog

Using Easy Expression
The "Easy Expression" dialog box is simple to use. The controls work
together to provide a complete point-and-click environment.

Expression

The "Expression" edit control may be used to manually type in or edit an
expression or part of an expression. The dialog's other controls perform their
insertions in this edit control at the current caret position. The caret is the
flashing vertical line that appears within the control when it has focus.

Fields

The "Fields" list box contains all of the fields of the composite data file. The
fields from the individual data files are separated by a "-- xxxxxxxx --", where
xxxxxxxx is the name of the data file.

Chapter 7: Expressions 131

When a field is selected with a single click of the mouse (or when focus is
shifted to the list box), the information window displays information about
the field.

A double click of the mouse on a field inserts the field name (with its field
name qualifier) within the "Expression" edit control.

Functions

The "Functions" list box contains all of the supported dBASE functions that
may be placed within an expression.

When a function is selected, the information window displays a short
description of the function -- including parameters (if any) and the function's
return type.

A double click on one of the functions inserts that function within the
"Expression" edit control and moves the insertion caret between the function's
parentheses.

Calculations

The "Calculations" list box contains all of the previously defined report
calculations. The calculation entered into the expression is evaluated anew
when the expression is evaluated. It is possible to include a calculation
within the expression of other calculations or totals. This "nesting" can
provide very flexible report design.

This list box also doubles for the "Tag Expressions" and "Totals" list boxes.
These list boxes are made available when the appropriate radio button is
selected.

Tag expressions do not have the necessary field name qualifiers required
for CodeReporter expressions. These qualifiers must be entered manually
if a tag expression is to be used.

Verifying an Expression

An expression entered in the "Expression" edit control can be verified by
using the "Verify" button. "Verify" attempts to evaluate the expression. If it
fails for any reason -- including incompatible types, incorrect number of
parameters for a function, or unrecognized symbols -- CodeReporter reports
the errors. If, on the other hand, an expression is correct, CodeReporter
indicates that there were no errors in the expression.

Exiting Easy Expression

Once an expression is complete and verified, the "OK" button may be used to
close the "Easy Expression" dialog. "Cancel" may also be used, but any
changes to the expression are lost.

Chapter 8: Styles 133

8. Styles
A professionally designed report not only has all of the necessary
information, but also formats it in an easily comprehensible manner. One
aspect of a visually appealing report is the typeface, size and color of the text
within the report. By using different typefaces, sizes, and colors, important
output objects (such as column titles, totals, negative numbers, etc.) can be
emphasized.

CodeReporter provides this functionality through the use of styles. A style
simply identifies a typeface, size, color, and special characteristics
(underlining, bold, italics, etc) by associating them with a name. Whenever
the same appearance is desired for an output object, it isn't necessary to re-
create the look, simply select a style.

As a report is designed, new styles may also be defined to provide a custom
look.

Why Styles
CodeReporter makes use of styles and style sheets for a number of reasons.
Foremost is to make customizing a report a simple task. A particular look
for the report (or series of reports) need only be defined once. When
completed, through the use of styles and style sheets, the process of selecting
the customized fonts need not be repeated.

Consistency

In addition to making the design of the report easier, it also promotes report
consistency. Instead of having to select a font, size and color for each and
every output object within a report (and possibly making a mistake), objects
of the same importance only need the style defined once. For example, if all
total objects are to be outputted in a special color, it is only necessary to
select the color in a style and associate that style with the total objects.

Through the use of style sheets, common styles can be used by multiple
reports. CodeReporter can save the style information into a special file that
can be loaded into other reports. This provides a quick way to have a
consistent look between reports without having to recreate the styles for each
new report.

134 CodeReporter

Flexibility

The flexibility inherent in styles and style sheets only becomes apparent when
a change needs to be made to the look of a report. When a font or color
must be changed throughout a report, simply change the styles and all of the
output objects within the report are automatically updated.

Non-Windows Styles

Using other Sequiter Software products and the CodeReporter API
(Application Programming Interface), reports designed within CodeReporter
under Windows may be outputted in other operating systems (such as DOS,
Unix, OS/2, etc.). Handling the output under operating systems other than
Windows presents special problems.

CodeReporter provides a solution to this problem through the use of non-
Windows styles. See , below, for more information on outputting reports in
other operating systems.

Creating Styles
When output objects are created, the default style is used for its output. If no
styles have been created, the CodeReporter style "Plain Text" is used as the
default style. If other styles have been created, the last selected style is used
as the default style for all new output objects.

Styles are created using the STYLE | CREATE menu option. Once selected,
CodeReporter prompts for the name of the new style. The new style name
must be unique for the report. That is, a style may not be created if the
report contains a previously created style of the same name.

Once the style name is selected, the "Font" common dialog is displayed. This
dialog, like the "File" dialog, is common to most Windows applications.
Most Windows word processors will have this dialog, or one similar, for
choosing the font information.

Choose the desired font, font size, color, etc. and click on the "OK" button.
From this point on, whenever an output object has this new style selected, the
specified font, font size, etc. will be used when the object is outputted.

When creating new styles, CodeReporter uses the currently selected style
as the basis for the new style. To create several closely related styles,
create the first one, select it, and then use it as a basis for the additional
ones.

Chapter 8: Styles 135

Figure 8.1 Font Dialog

Deleting a Style
Styles may be deleted by selecting the STYLE | DELETE menu option. If there
are styles that may be deleted, a submenu appears listing the styles. Selecting
a style causes it to be deleted.

If an attempt is made to delete a style that is currently being used by output
objects, CodeReporter issues a warning.

Output objects using a deleted style are reverted to the first style in the style
popup menu.

CodeReporter must have at least one style defined for each report. As a
result, if there is only one style within a report, it may not be deleted.

Modifying a Style
The currently selected style may be modified by choosing the STYLE | MODIFY

menu option. This invokes the "Font" common dialog so that the custom
changes may be made.

When the currently selected style is modified, all output objects using the
modified style are automatically updated.

136 CodeReporter

Changing a style to a larger font size does not change the size of the output
objects using the style. As a result, the output objects may not display all
of the text for the object. Manually change the sizes of the output objects
to accommodate the new size.

Selecting a Style
A style may be selected by using the style popup button (See Figure 1 in the
Getting Started section of this manual for the location of this button). When
depressed, this button creates a popup list containing all of the previously
created styles for the report.

A style may be selected from this list with a single or double click. In the
case of the single click, however, an additional click on the style popup
button is necessary to close the style popup menu. Selecting an output object
also selects the style associated with that output object.

For an Object
If there are any output objects selected while a style is selected in this
manner, they are set to the new style. This is the quickest way to set a style
for an output object.

A style may also be set using the "Style" drop down list box within the
"Object Settings" dialog. See the for information on the "Object Settings"
dialog.

Non-Windows Styles
Report output within Windows is handled by the various display and print
drivers available to Windows. A report outputted on a laser printer looks
about the same if outputted on a dot matrix printer. Whether or not a printer
supports a particular font is irrelevant, since Windows makes approximations
-- or outputs the text as graphics -- to achieve the same result. This is one of
the Windows advances that non-Windows applications are not able to take
advantage of.

Non-Windows styles are only necessary if a report is to be output in an
operating system other than Windows. If a report is only to be outputted in
Windows, non-Windows styles may be ignored.

Chapter 8: Styles 137

Non-Windows applications are limited to the fonts and characteristics that
are supported by the printer; since these issues are solely handled by the
printer. To confuse matters even more, different printers activate the same
characteristic (eg. Bold letters) differently. One may require the application
send it one set of information, while another printer may need something
different.

Through the use of non-Windows style definitions, printer specific control
codes -- which cause a printer to output text in different fonts -- may be
stored in the styles of a style sheet. The advantage in this is that different
style sheets may be created for the different printers and selectively loaded at
the time a report is run in the other operating system. A 'Bold' style in a style
sheet for a laser printer would contain the bold printer control codes for the
laser, while the 'Bold' style in a dot matrix's style sheet would contain the
appropriate codes for bolding text on the dot matrix.

The CodeReporter API functions don't care what the actual codes are or
which style sheet is loaded.

See the CodeReporter API for more information about outputting reports in
non-Windows operating systems.

Specifying Styles
As mentioned above, there are printer specific control codes which cause the
printer to output text in a different manner -- bold, for instance.

Most printers use two sets of codes to control any specific function or
attribute: one set to turn "on" a function, and another to turn it "off."
Turning "on" the bold typeface may be ESC "G+", while turning it "off" and
resetting the printer to standard mode might be ESC "G-". The actual codes
necessary for a font or characteristic is dependant upon the printer used to
output the report in the non-Windows operating system. These codes should
be listed in the documentation that comes with the printers.

The CodeReporter API functions send the style's "on" codes before the text of
each output object, and the "off" codes once the object is outputted.

The special control codes for the currently selected style may be entered using
the STYLE | NON-WINDOWS DEFINITION menu option. This invokes the "Non-
Windows Style Information" dialog.

138 CodeReporter

Figure 8.2 Non-Windows Style Information Dialog

The "Pre-Text Control String" edit control is used to specify the control codes
to turn "on" a specific printer font, while the "Post-Text Control String" is
used to turn the same attribute "off".

The format of the control string is determined by the "Control String Format"
radio buttons. When the "Dec" radio button is selected, the text entered in the
dialog's edit controls are interpreted as decimal values -- when the "Hex"
radio button is selected, the text entered must be the equivalent hexadecimal
values. Each control code entered must be separated by a space. The
CodeReporter API does not send the space character -- it is only used as a
delimiter between the control codes.

Multiple non-Windows Codes

Multiple attributes for non-Windows output objects, such as emphasized and
italic, must be entered within one non-Windows style definition. Simply
separate the last code of the previous control setting by a space and begin the
new control code sequence. Some printers may require a specific order when
combining codes. Refer to the printer's documentation on combining control
codes.

As mentioned above, the exact values necessary for any one typeface or
attribute (such as bold) vary from printer to printer. See , for a conversion
between ASCII, Hexadecimal, and Decimal values.

Chapter 8: Styles 139

Example
The following example illustrates the steps necessary to create an italic font
(for both a Windows and a non-Windows operating system) and how to
specify the new style for an existing output object. It is assumed that the
non-Windows printer is an Epson compatible printer.

Start a New Report

Begin a new report by selecting the FILE | NEW menu option. Since this
example report does not require a specific data file, choose any data file from
the .\EXAMPLES directory as the top master data file.

CodeReporter automatically creates a default "Body" group (with a header
area) and a default style ("Plain Text").

Create Text Objects

Using the OBJECT | TEXT menu option to put CodeReporter into Text Object
insertion mode, place two text output objects in the group header area with
the following text:

• This is NOT italic

• This IS italic

At this point in the report, both output objects use the default "Plain Text"
style which is not italic.

Create the Windows Style

Create a new italic style by selecting the STYLE | CREATE menu option. When
prompted for the style name, enter a descriptive name for the italic style, such
as "Italic," and select the "OK" button.

CodeReporter invokes the "Font" dialog (Figure 8.1) using the currently
selected font as the basis for the new font. To set this new style as italic,
change the "Font Style" list box so that the "Italic" entry is highlighted and
select the "OK" button.

Setting an Object

Creating a new style does not alter any output objects within the report. It is
necessary to select the desired output objects and set their new style.

Single click on the text object that contains the text "This IS italic" to select
it. Notice that the Styles Popup button indicates that the output object uses
the "Plain Text" style. Single click on the Styles Popup button to display the
Styles list, and double click on the newly-created "Italic" style to select the
style for the selected output object.

Display the report (using the FILE | PRINT PREVIEW menu option) to verify
that the italic style is being used with the "This IS italic" text output object.

140 CodeReporter

Setting the Non-Windows Codes

The report just created uses the Windows display driver to output the italic
and non-italic text of the report to the screen. This example report may also
to be outputted in a non-Windows application where the Windows drivers
would not be available. It is necessary, therefore, to enter the printer-specific
control codes into the newly created "Italic" style so that the report could be
outputted correctly in a non-Windows application.

With the "Italic" style selected, chose the STYLE | NON-WINDOWS DEFINITION

menu option to invoke the "Non-Windows Style Information" dialog.

The Epson-compatible code to select italic printing (as listed in Epson printer
manuals) is "ESC+4". If the actual characters "ESC+4" were entered within
the "Pre-Text Control String" edit control, and the "OK" button were
selected, CodeReporter would display an error. This is because the only
supported formats for entering control codes are decimal and hexadecimal --
not ASCII representations of control codes.

The decimal equivalent for the escape key is 27. The four is represented as
52 (See Appendix D for a list of ASCII characters and their
decimal/hexadecimal equivalents). Ensure that the "Dec" radio button is
selected and enter "27 52" (without the quotation marks) within the "Pre-Text
Control String" edit control.

Since it is important to release the italic printing after the output object is
printed (failure to do so could cause non-italic objects to be outputted in an
italic typeface), specify the codes to turn "off" italic printing. Epson-
compatible printers use "ESC+5" to do this. Enter "27 53" within the "Post-
Text Control String" edit control and select the "OK" button to complete the
non-Windows definition of the "Italic" style.

Chapter 9: CodeReporter Options 141

9. CodeReporter Options
This chapter deals with some of the "cosmetic" preference settings available
within CodeReporter. These settings do not affect reports or report files in
any way, but merely alter some of the functioning and appearance of
CodeReporter.

View Options
When CodeReporter is first invoked, several CodeReporter options are
defaulted. Some of the most noticeable are the view options.

The VIEW menu controls the display or lack of display for the various
elements of the report design screen: button bar, ruler, status bar, and info
windows.

Button
Bar

Ruler

Info
Windows

Status
Bar

Style
Popup
Button

142 CodeReporter

When the various menu options are checked (the default), the report design
screen element is displayed. Some elements may take up needed visual room
in which the report is designed.

Selecting a checked menu option removes the report design screen element
and unchecks the menu option. Selecting an unchecked menu option adds the
report design screen element and checks the menu option.

The flexibility of adding and removing report design screen elements allows
the report designer the flexibility of customizing his/her working environment.

Report Preferences
Some additional operational preferences can be set within the "Report
Preferences" dialog -- such as the preferred unit of measure, the unit of
measure of the ruler (if enabled) and the report display height.

Display Units
CodeReporter internally represents the positions and dimensions of output
objects and report areas in increments of 1/1000ths of an inch. However,
since the average report designer does not need this amount of precision when
placing output objects, CodeReporter uses customizable units of
measurement for the design interface.

The default unit of measurement for CodeReporter is inches. This may
easily be changed by using the "Report Preferences" dialog and selecting
another radio button in the "Units" area. This unit is then used whenever
CodeReporter requires or provides a measurement. This includes the
dimensions of the report and report areas, the coordinates and dimensions of
output objects, margins, etc.

CodeReporter automatically changes its display of all parts of the report to
reflect the new unit of measurement. CodeReporter doesn't actually change
the position/size of anything within the report when this setting changes, since
everything is always internally represented in 1/000ths of an inch.

The only aspects of CodeReporter that are not affected by the "Units" setting
are the common dialogs (eg. "Font") and the ruler. Since the common
dialogs may not be modified by CodeReporter, they are unaffected by the
"Units" setting.

Ruler

The ruler is used as a visual aid for horizontally placing and moving output
objects. As an example, some reports may be printed on special company
invoices that have a specific column for some figures. Instead of attempting
to place output objects by "trial and error", a physical ruler may be used to
measure the document and the CodeReporter ruler may be used to quickly
place the object.

Chapter 9: CodeReporter Options 143

The units of measure for the ruler are set within the "Report Preferences"
dialog. Selecting the "Inches" or "Centimeters" radio buttons in the "Ruler"
section sets the units used in the ruler.

This setting may be different than the "Units" setting.

Inches Points Centimeters

1 Inch 72 2.45

1 Point 0.014 0.34

1 Centimeter 0.41 29

Table 9.1 Units Conversion Table

View Page Size
CodeReporter reports may be previewed on the screen before actually being
outputted to the printer. This is done using the FILE | PRINT PREVIEW menu
option.

The preview of reports is often done simply to see the information within a
report, or to see how pages are reset. This is facilitated by CodeReporter
setting the preview page size equal to the size of the display screen. In effect,
the vertical page size of the report is shrunk to the size of the display screen
so that the full-sized page header and page footer may both be seen
simultaneously.

The report may be previewed in the same size as it is printed by unchecking
the "Page size equal to screen size when viewing report" check box in the
"Report Preferences" dialog.

Unchecking this option causes the report to be displayed in the same size font
as is printed, and on the same size display page as printed. However, since
most display screens are not as large as most pages, unchecking this check
box causes vertical scroll bars to appear.

The "Page size equal to screen size when viewing report" check box has
no effect on the actual printing of a report. This setting only affects the
size of the page used when the File | Print Preview menu option is selected.

144 CodeReporter

Chapter 11: Printing 145

10. Customizing Reports
CodeReporter makes certain assumptions concerning all new reports.
Aspects such as page size, report width, margins, numeric formatting, etc. are
all set to default values when a new report is created.

However, it is not always the case that these default settings are appropriate
for the report designer, or for the report itself. All reports are not outputted
on the same size paper, nor do they use the same margins. Many reports
require that special custom changes be made in order to satisfy the report's
demands.

These and other settings may be customized once a report is initiated by using
two dialog boxes: "Margins" and "Report Preferences"

Margins and Page Size
The "Margins" dialog, which is invoked using the REPORT | MARGINS menu
option, is used to change both the margins of the report and the width of the
page.

The margins and page size are automatically set according to the maximum
printing area available on the Windows default printer. For most dot matrix
printers, this means that the report initially is set up to cover the entire
surface of the page. Some other printers, notably laser printers, have a
hardware margin that prohibits the output of text beyond a certain point.
CodeReporter automatically detects this and, as a safety feature, does not
allow margins of a report to be less than the hardware margins for the
selected printer.

Margins
The margins of the report are determined by the various margin settings
within the "Margins" dialog. To alter the top, bottom, left or right margins,
simply change the value within their respective edit controls.

The page header area(s) and page footer area(s) are outputted between the
top and bottom margins. For example, if the top margin was set to one
inch, the upper edge of the first page header area would be outputted at
one inch.

146 CodeReporter

Figure 10.1 Margins Dialog

To make it appear that portions of the page header or page footer are
outside of the top and bottom margins of a report, set the top/bottom
margins to a small value, and then increase the size of the page
header/footer areas.

Page Width
As mentioned above, the page width for new reports is determined by the
current page setting for the Windows default printer. If the ultimate
destination printer is wider or narrower than the default printer, the "Page
Width" setting may be used to change the width used by CodeReporter.

The height of a page is determined from the selected printer when the report
is outputted.

It is up to the person outputting the report to ensure that the specified
printer is properly set up within Windows -- including the correct paper
size and orientation.

Orientation
The orientation of a report (landscape or portrait) is determined by the set up
of the printer at output time. This may be either set through Windows
Control Panel, or temporarily through the FILE | PRINTER SELECTION menu
option. See for information on setting the page orientation.

Report Preferences
The "Report Preferences" dialog can be used to change some of the report-
wide default settings that affect the actual output of the report -- including the
default formatting of numbers and dates.

Chapter 11: Printing 147

Figure 10.2 Report Preferences Dialog

Numeric Format
Most of the settings that affect output objects that evaluate to numeric results
are set on an object-by-object basis through the "Object Settings" dialog.
Those settings include: the number of decimals displayed; whether the object
is a percent, a currency value or a simple number; how a zero value is
outputted, etc.

Some settings for numeric output objects are changed on a report-by-report
basis. These include the use of the thousands separator, the currency symbol
for the report, the character used for a decimal point, etc. The "Report
Preferences" dialog is used to modify these settings for the current report.

Currency

When numeric output objects are set to be displayed as currency values the
character(s) specified in the "Currency" edit control are outputted
immediately before the numeric contents of the object (See for formatting
output objects as currency values). The default currency symbol is the
"dollars" ($) symbol, however, up to ten characters may be specified. Table
10.1 list some common currency symbols that are supported by the standard
Windows character set.

148 CodeReporter

Character Name Key Strokes

 ¢ Cent Alt+0162

 £ Pound Alt+0163

 ¥ Yen Alt+0165

Table 10.1 Common Currency Symbols

Thousands

Numeric values greater than one thousand may use a character placeholder to
format the output to the thousand, million, billion, etc. place. The normal
North American separator -- and the CodeReporter default -- is the comma.

The "Thousand Separator" edit control may be used to change this value to
any single character (including a space) or it may be deleted completely.

If a thousand separator is specified, all numeric values use it as a
placeholder. If it is deleted, the numbers are outputted in raw form.

Example:

Using a thousand separator 1,000,000

Using no separator 1000000

Decimal Point

When CodeReporter outputs fractional numbers it places the character
specified in the "Decimal Point" edit control between the whole number and
the fractional part. Any character may be entered in this edit control and
used to separate fractional numbers from whole numbers.

In North America, the period is used to divide fractional numbers from whole
numbers. In some countries, other characters such as a comma are used.

This setting has no bearing on the number of decimal places outputted for
an object. (See for setting the number of decimal places)

Date Format
Output objects that evaluate to a date value (eg. date fields, date expressions)
may be outputted in a variety of formats. New date output objects use the
setting in the "Default Date Format" drop down combo box to determine how
they are outputted initially.

A specific date format picture may be entered into the edit portion of the
combo box, or one of the pre-defined date formats may be chosen from the
drop down list.

See for more information on the date format picture.

Changing the value in the "Default Date Format" drop down combo box
does not affect the date format for any previously created date output

Chapter 11: Printing 149

objects. The "Default Date Format" setting only affects new output
objects.

Path Names
CodeReporter can use several data files within a report that may be located
across several different drives and directories. CodeReporter does this by
saving the full drive and directory path to each data file used in the report.
While this provides flexibility in regards to the possible sources of the
information, it also requires that the data files must be where they were when
the report was created.

The "Save Full Path Names" check box within the "Report Preferences"
dialog determines whether or not the complete path to the data files in the
report are saved with the report.

If this check box is not checked, CodeReporter does not save the drives and
directories to the data files. The next time the report is retrieved,
CodeReporter is unable to access the data files in their original paths (since
they were not saved) and assumes the data files are in the current directory.

Hard Reset
When a group encounters a group reset condition and it has the Reset Page
option set (see), the "Hard Reset Flag" check box is used to determine the
method of resetting the page.

If "Hard Reset Flag" is not enabled (the default), a new page is not generated
if the group with the Reset Page option was reset as a result of a higher level
group resetting. Only if it was the group's group expression itself that caused
the group reset condition, is a new page generated. When "Hard Reset Flag"
is checked, a new page is generated regardless.

See Figure 10.3 in the CodeReporter manual for an illustration of both
settings.

Page Break After Title
The "Page Break After Title" check box determines whether or not
CodeReporter should begin the report on a new page after the title area has
been outputted. If this check box has been checked, the title area, if used in
the report, is outputted and the report continues on a separate page.

If the check box is not checked, the title area is outputted on the same page as
the header area for the first group.

Report Caption
The CodeReporter Print Preview window, by default, displays "CodeReporter
2.0" in the window's title. This title may be customized to reflect the name of

150 CodeReporter

the report or any appropriate title by changing the value of the "Report
Caption" edit control in the "Report Preferences" dialog.

Figure 10.3: Reset Page
and Hard Reset Flag

DATES.DBF

1993 January 12

1993 January 13

1993 January 14

1993 February 10

1993 February 11

1994 February 4

Group: Page Header

Group: Year

 YEAR
Group: Month

 MONTH
Group: Day

 DAY

Report Design
Screen

Both the Year and
Month Groups have the
Reset Page option set.

1
1993

January
12
13
14

Month resets. No new
page, since it is reset by

2
February

10
11

Month resets. New
page, since Reset Page

3
1994

January
4

Month resets. No new
page, since it is reset by

1
1993

2
January

12
13
14

3
January

10
11

4
1993

5
February

4

Hard Reset
Flag disabled
(default)

Hard Reset
Flag enabled

Each time
Month or Year
is reset, a new
page is
generated

Chapter 11: Printing 151

11. Printing
The ultimate goal of any report is to have it on paper. The usual destination
of a report is a printer. However, this is not always the case. In some
situations, it is desirable to output a report to the computer's screen or to a
file. This chapter discusses the procedures necessary to output a report.

Selecting a Printer
Many hardware setups have a single computer hooked up to a single printer
and all printed output from the computer goes to the one printer. In this
case, selecting a printer is easy -- there's only one to choose from.

Other setups, however, may have a single computer hooked up to one or more
printers locally and/or via a network. Unless CodeReporter is told otherwise,
it uses the Windows default printer for all printed output.

If the Windows default printer is acceptable, no changes need to be made.
Any other printer must explicitly be selected using the "Print Setup" common
dialog. This is invoked with the FILE | PRINTER SELECTION menu option, or
the "Setup" button in the "Print" common dialog.

Figure 11.1 Print Setup Dialog

To select a non-default printer, choose the "Specific Printer" radio button and
use the drop down list box to select one of the installed printers.

This dialog is also used for selecting landscape/portrait mode, different sizes
of paper, etc. Select the options appropriate to the report and then choose the
"OK" button.

152 CodeReporter

The settings in the Print and Print Setup dialogs are not saved with the
report, and so may need to be reset each time the report is loaded.

To the Screen
CodeReporter provides a way to preview a report before it is outputted to a
printer. Displaying the report to the screen is a useful way of ensuring the
report is correctly laid out -- without wasting several sheets of paper.

The FILE | PRINT PREVIEW menu option creates a new window and outputs the
report, page-by-page, within it. CodeReporter creates the window maximized
(covering the entire screen), however it may be minimized or resized using the
window's maximize/minimize buttons and the sizing bar.

The NEXT menu option of this window is used to move to the top of the next
page. CLOSE is used to exit the report preview screen and return to the
CodeReporter design screen.

When a report is previewed, the vertical page size of the report may be
temporarily set to the size of the screen. This is optional and may be
changed to use the page size for the selected printer. See the for more
information.

To a Printer
Once a report is previewed and appears to be correct, the report may be
outputted to the selected printer using the FILE | PRINT menu option. This
invokes the "Print" common dialog.

Select the number of copies, and/or use the "Setup" button to select and
configure the desired printer. Use the "OK" button to begin printing, or
"Cancel" to return to the CodeReporter design screen without printing.

In the context of a report, which does not have set page breaks, setting a
range of pages to output doesn't make sense. The page range settings are
ignored by CodeReporter.

Setting the "Print Quality" drop down combo box to 'Draft' may cause the
printer driver to re-adjust the vertical and horizontal spacing of output
objects to the character boundary.

This can cause reports that preview as single spaced to be outputted as
double spaced. Either set the "Print Quality" to 'High', or adjust the size of
the report's report areas so that they are 12 points high (or a multiple
thereof).

Chapter 11: Printing 153

Figure 11.1 Print Dialog

To a File
A printed version of the report may be saved in a file for a number of
reasons. Either to print the report at a later time, transfer it to another
program, or simply to save the report in electronic form.

The following steps are taken to print a report to a file.

1. Select the FILE | PRINT menu option to invoke the "Print" dialog.

2. Choose the "Print to File" check box.

3. Choose the "OK" button to begin printing.

4. When the "Print to File" dialog box appears, enter the file name (and path
if desired) under which the printed report is to be saved. This file name
should be different than the name of the report file (eg. if the current
report is "INVOICE.REP" don't save the printed report under
"INVOICE.REP").

Print vs. View
A file containing a printed report holds all the information necessary to
output a report in the desired font, size, position, etc. As mentioned under ,
Windows uses printer drivers to print just about anything on any printer.

When printing to a file, Windows dumps all of the printer specific codes for
doing lines, graphics, fonts, etc. into the file. If the file is later copied to the
printer, the report appears exactly the same as if it had been printed directly
from the application. There are two general disadvantages to printing a report
to a file: first, the file can become quite large -- especially if the report is
quite long and uses several different fonts, graphics, etc. secondly, since all of
the printer codes are stored within the file, the file is usually illegible when
viewed within another application (such as a text editor).

154 CodeReporter

Using the Generic Printer

As an alternative to storing all of the printer specific information within the
file, Windows has a special generic print driver which only outputs text.
Graphic elements (lines, frames, graphic objects), and fonts are not outputted.
Simply the text of the report is outputted. When this driver is used to print a
report to a file, it has the advantage of reducing the size of the file, and
making it legible to other applications.

This generic print driver is a part of Windows, and must be installed before
CodeReporter can utilize it. Install this driver using the Windows Control
Panel -- Printers application.

1. Select the "Add" button from the "Printers" dialog,

2. Select the "Generic / Text Only" printer from the "List of Printers" list
box, and

3. Select the "Install" button.

This new printer can then be selected and used to output reports rapidly to
text only printers or to ASCII files.

When outputting a report to an ASCII file using the generic printer driver, it
is important to set the report areas to 12 points high (or a multiple thereof)
in order to have the report saved with the correct spacing.

To a Database File
An important feature of CodeReporter is the ability to output a report to a
data file. This means storing the results of the report, including totals,
calculations, fields, etc. into a data file which may then be used as the basis
for another report.

This is accomplished by specifying the output objects to be included in the
final output data file. However, since most output objects are dynamic and
have their value change from composite record to composite record, it is
necessary to also specify when the values of the selected output objects are
written to the output data file.

Both of these tasks are accomplished with the "Output File Template" dialog
, which is invoked from the REPORT | OUTPUT FILE TEMPLATE menu option.
The settings made in this dialog are saved with the report, and may be
modified at any time.

Chapter 11: Printing 155

Objects
The "Objects" list box lists all of the output objects within the report --
excluding memo fields, lines, frames, graphics and objects within the
title/summary and page header/footer areas.

When an output object is selected the "Object Info" window displays
information about the output object. Adding an output object to the output
data file is a simple matter of selecting the object and using the "Add >>" and
"Add All >>" buttons.

Figure 11.3 Output File Template Dialog

In cases where the output object's identification is not a valid field name
(such as the case for totals and calculations), or if a field of the same name
has already been added to the output data file, CodeReporter prompts for a
new destination field name.

Once added, the particulars of the field may be modified using the "Change
Field Name" and "Change Field Length" buttons.

156 CodeReporter

Record Output Group
CodeReporter uses the reset expression of the "Record Output Group" to
determine when to write the contents of the field output objects into a new
record. When the specified group encounters a reset condition, a new record
is created on disk and the values of the output objects are written to this
record using the values obtained in last record of the previous group's subset
(i.e. the group footer).

The "Record Output Group" drop down list box, by default, lists the outer
most group in the report. If another group is desired, it may be selected using
this control.

Output Data File
The "Output Data File" section lists the file name of the data file in which the
report is saved. To set this name, use the "File Selection" button to invoke
the "Select a Datafile" dialog (a common File Open dialog) to specify the
drive, directory, and file name of the destination output data file.

If the specified data file exists when the report is printed to it, CodeReporter
prompts before overwriting it.

Selecting the "OK" button saves the new data file template within the current
report.

Print to Datafile
Once a data file template is designed, the report may be outputted to the data
file using the FILE | PRINT TO DATAFILE menu option. When selected, this
menu option creates the data file specified in the "Output File Template"
dialog and fills it with information from the report. This new data file may
then be used in the exact same manner as any other data file.

Example
This short example demonstrates the usefulness of printing a report to a data
file. This example will take the PERSONEL.DBF data file, sort it, and
transform it into the PERSONS.DBF data file.

While CodeReporter is running, select the FILE | NEW menu option to initiate
a new report and select the PERSONEL.DBF data file as the top master.

Add the Fields

Add all of PERSONEL.DBF's fields to the report by using the "Field" button
on the button bar, selecting all of the fields, and clicking within the Body
group. Since this report is primarily being used as a data transformation tool,
it doesn't really matter where the fields are placed within the area.

Chapter 11: Printing 157

Create an expression object

PERSONEL.DBF has the people's names separated into first and last name
fields (FNAME and LNAME, respectively). Suppose the PERSONS.DBF
data file needed to have the name in a single field, in the format "Smith, John"
and "Andrews, Peter".

Using CodeReporter to do this is simple. Merely delete the two name fields,
and add an expression output object that contains both fields. For example:
TRIM(LNAME) + ', ' + FNAME

If the report were previewed at this point, it would show all of the
information in the PERSONEL.DBF data file, but with a combined name
field.

Create the template

Since all the fields are now added to the report, it is time to generate the
output file template. Select the REPORT | OUTPUT FILE TEMPLATE menu option
and invoke the "Output File Template" dialog (Figure 11.3). Use the "Add
All >>" button to add all of the output objects in the report to the new data
file.

As this occurs, CodeReporter indicates that the expression output object
doesn't have a field name that can be added to the new data file. Enter
"NAME" into the "New Name" edit control and select "OK".

Select the "File Selection" button and in the resultant dialog, enter
"PEOPLES.DBF" as the name for the new data file. All other settings in the
"Output File Template" dialog are appropriate, so select "OK" to save the
template.

Sorting the data fileIf desired, use the REPORT | SORT EXPRESSION menu
option to enter a sort expression for the report. When the report is outputted,
the records in the output data file are written in this sorted order. An
appropriate sort expression may be LNAME+FNAME, EMPID, or SALARY.

Generate the data file

The new PEOPLES.DBF data file is generated by selecting the FILE | PRINT

TO DATA FILE menu option.

Load the new PEOPLES.DBF using FILE | NEW (saving the current file if
desired) to verify that the information was written as expected.

Chapter 12: Function Reference 159

12. Function Reference
This chapter documents the functions and techniques for using the report
module in C/C++. Visual Basic and Delphi programmers, please refer to
Appendix F.

The report module functions are used to build custom reports. With the
report module, you can easily summarize, format, display and print
information in data, index and memo files.

All of the report module functionality can be accessed indirectly via
CodeReporter. CodeReporter uses the report module to generate soft-coded
report files and their C source code. The generated source code is full of
calls to the report module functions.

In some cases, there may be a need to create an entire report by hand or
modify a report designed with CodeReporter. The application might use the
report module to load a report designed with CodeReporter, change the query
and/or sort expressions, specify where to output the report, and then finally
execute the report. Report functions are used directly in order to accomplish
these custom tasks.

The report module contains no function for creating calculations. This is because
the calculation creation function, exp4_create, is part of the CodeBase
expression evaluation module. Refer to the CodeBase expression evaluation
module and obj4calcCreate for more details.

Report Module Names

The functions of the report module are grouped together by functionality.
Report functions designed to effect the entire report are grouped together;
functions to create and manipulate groups are grouped together, etc. In a
sense, the report "module" is actually a number of modules.

area4
Each group may contain one or more areas where output objects may be
placed. Functions that change the size of the areas, and determine their
suppression conditions begin with area4.

group4
Each report contains a number of groups. The functions that change the way
a group acts, and is accessed, begin with group4.

160 CodeReporter

obj4
The functions used to create, free, and modify output objects begin with
obj4.

report4
These are the main report functions. They are used when something applies
to the entire report. These function initialize the report, load and save
relations and styles, change the page size, change the report's default settings,
etc. The report specific functions begin with report4.

style4
Every output object can be assigned an output characteristic such as typeface
and color. These characteristics, called styles, need only be defined once in a
report, and not for every output object that uses them. The style4 functions
create and modify the styles for a report.

total4

The definitions upon which total output objects are based are created and
freed are set using these functions. Creation of the actual total output object
is not done with these functions, but rather with the obj4 functions.

The following sections document all of the above "report modules".

An application can only load one report at a time. If an application is to use more
than one report, report4free must be called between each report.

Saving As Code

When CodeReporter saves reports to disk with the FILE | SAVE menu option,
it does so in soft-coded report files with the extension of ".REP". This is
adequate for most uses, including end-user applications, since these report
files may be loaded while the application is running. This provides the
developer the flexibility of modifying a report layout without having to re-
compile the application that uses the report.

In some instances, it may be desirable to save the report directly as source
code. This is done using the FILE | SAVE AS CODE menu option. This
invokes the "Specify Report File for Save" dialog which prompts for the file
name and source code language for the code.

CodeReporter generates language specific source code for the currently
loaded report and saves it in the specified file. The source code file
contains two functions, which may be called in an application to load the
report and/or relation. These two functions must be prototyped in the
application prior to their use but may be renamed in the generated source
file (and prototype) as desired.

Chapter 12: Function Reference 161

buildRelate

Usage: RELATE4 *buildRelate(CODE4 *cb, int openFiles)

Description: This function creates and/or populates a RELATE4 structure for the relation
of the saved report. This structure may be used with the CodeBase 5
relation module, or with the report module function report4init.

This function is automatically called by buildReport.

Parameters:

cb This is a pointer to the application's CODE4 structure. This is used for
memory management and error handling.

openFiles This parameter determines whether buildRelate should automatically
open the data files referenced within the report file. If openFiles is a true
value (non-zero) the data files for the report are opened if they are not
already open. If openFiles is a false value (zero) the data files are
assumed to be open.

Returns: This function returns a valid pointer to a RELATE4 structure if
successful. NULL is returned if the data files for the relation could not be
found.

buildReport

Usage: REPORT4 *buildReport(CODE4 *cb, int openFiles)

Description: This function builds the report and returns a pointer to the populated
report structure. buildReport automatically calls buildRelate to build the
relation behind the report.

Parameters:

cb This is a pointer to the application's CODE4 structure. This is used for
memory management and error handling.

openFiles This parameter determines whether buildRelate should automatically
open the data files referenced within the report file. If openFiles is a true
value (non-zero) the data files for the report are opened if they are not
already open. If openFiles is a false value (zero) the data files are
assumed to be open.

Returns: This function returns a valid pointer to a REPORT4 structure if
successful. NULL is returned if the data files for the relation could not be
found, or if there wasn't enough memory to build the report.

162 CodeReporter

Using Report Functions
The report functions provide a method of designing complex reports in and
out of the Windows environment. Hand-writing all the code necessary to
create a report, in most cases, is a lot of work. As a solution, CodeReporter
has two options that are useful to the application developer: saving a report
as a soft-coded report file (.REP extension) and saving the report as C source
code. When a report is saved with CodeReporter, it is placed within a soft-
coded report file (.REP) that can be directly loaded into an application. With
a few function calls, a report can be loaded and quickly executed. In the
majority of cases, this is sufficient.

In the cases where these report files are inappropriate, the report can be saved
as C source code by CodeReporter. This code can be used without having
the time consuming burden of hand-coding every function needed to create the
report.

There are very few cases where a soft-coded report file, or CodeReporter-
generated source code will not meet the reporting needs. The CodeReporter
report module functions are provided so that a report can be modified or built
from scratch to meet the application's reporting demands.

Using a Report File
The most common, and flexible, case of implementing a report in an
application is by loading a soft-coded report file and executing the report.

PROGRAM
REP1.C Using a CodeReporter report file.

#include "d4all.h"

#ifdef __TURBOC__
 extern unsigned _stklen = 10000 ;
#endif

void main(int argc, char *argv[])
{
 CODE4 cb ;
 REPORT4 *report ;
 if(argc < 2)
 return ;

 code4init(&cb) ;

 report = report4retrieve(&cb, argv[1], 1, NULL) ;
 if(report)

Chapter 12: Function Reference 163

 {

 report4do(report) ;
 report4free(report, 1, 1) ;
 }

 code4initUndo(&cb) ;
 return ;
}

Function report4retrieve loads the specified report file from disk, creates
an internal REPORT4 structure, and returns a pointer to the structure. This
pointer is then used to execute the report with function report4do.

The code in REP1.C is a generic way of displaying any report file, since a
report file name is specified on the command line. The file name is all that is
needed to load a report from disk. The entire report, including the names of
the data files, is stored in the soft-coded report file. All that is necessary to
display the report is to call function report4do. The internal functions take
care of the rest.

If this same application were to be written for Windows, the following code
might be used.

PROGRAM
WREP1.C Using a CodeReporter report file under Windows.

#include <windows.h>
#include "d4all.h"
#include "r4report.h"

#define IDM_DOREPORT 101
static char *reportName ;
long FAR PASCAL WndProc (HWND, UINT, WPARAM, LPARAM) ;

int PASCAL WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpszCmdParam, int nCmdShow)

{
 static char szAppName[] = "WREP1" ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;
 reportName = lpszCmdParam ;

 if (!hPrevInstance)
 {
 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;

164 CodeReporter

 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = "MAINMENU" ;
 wndclass.lpszClassName = szAppName ;

 RegisterClass (&wndclass) ;
 }

 hwnd = CreateWindow (szAppName, "Application Window",WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,
CW_USEDEFAULT, NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, nCmdShow) ;
 UpdateWindow (hwnd) ;
 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }

 return msg.wParam ;
}

long FAR PASCAL WndProc (HWND hWnd, UINT message, WPARAM wParam
, LPARAM lParam)

{
 static CODE4 cb ;
 static REPORT4 *report ;

 switch (message)
 {
 case WM_COMMAND:
 switch(wParam)
 {
 case IDM_DOREPORT:
 report = report4retrieve(&cb, reportName, 1, NULL) ;
 if(report)
 {
 report4parent(report, hWnd) ;
 report4toScreen(report, 1) ;
 report4do(report) ;
 }
 break ;
 }
 break ;
 case WM_CREATE:
 code4init(&cb) ;
 break ;

Chapter 12: Function Reference 165

 case CRM_REPORTCLOSED: /* Sent by report4do, see API */
 report4free(report, 1, 1) ;
 break ;
 case WM_DESTROY:
 code4initUndo(&cb) ;
 PostQuitMessage (0) ;
 return 0 ;
 }

 return DefWindowProc (hWnd, message, wParam, lParam) ;
}

PROGRAM
WREP1.RC Windows resource file for the menu.

MAINMENU MENU
BEGIN
 MENUITEM "&Display Report", 101
END

PROGRAM
WREP1.DEF Windows definition file.

DESCRIPTION 'WREP1 CodeReporter Example'
EXETYPE WINDOWS
STUB 'WINSTUB.EXE'
CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD FIXED MULTIPLE
HEAPSIZE 4096
STACKSIZE 15000

Using Generated Code

CodeReporter can generate source code for any report file. The hard-coded
source code to these reports is stored in individual files which may be
compiled and linked with any application needing the report. All that is
necessary, from the application's side, is a prototype of the function which
creates the REPORT4 structure, and a call to that function. Once created,
the 'do' and 'free' sequence is carried out exactly as if the report was loaded
using function report4retrieve.

166 CodeReporter

PROGRAM
REP2. C Using source code generated by CodeReporter.

#include "d4all.h"

#ifdef __TURBOC__
 extern unsigned _stklen = 10000 ;
#endif

/* Prototype the CodeReporter-generated function */
REPORT4 *buildReport(CODE4 *, int) ;
void main(void)
{
 CODE4 cb ;
 REPORT4 *report ;

 code4init(&cb) ;

 report = buildReport(&cb, 1) ;

 if(report)
 {
 report4do(report) ;
 report4free(report, 1, 1) ;
 }
 code4initUndo(&cb) ;
 return ;
}

REP2.C uses a report file saved as source code. As documented above, the
buildReport function, generated by CodeReporter, is used to build the
report. The code for the buildReport function must be linked with REP2.C
to produce the final executable.

The prototype of function buildReport should be placed above main. This
prototype is used to properly instruct the compiler on the parameters and
return value for the CodeReporter-generated function. The prototype of the
CodeReporter-generated report function follows this pattern:

REPORT4 *buildReport(CODE4 *cb, int openFiles);

The generated source code may also be used in a Windows application in the
exact same manner. WREP2.C illustrates this point. By simply replacing
the report4retrieve line with the function name in the generated source code
report file, the report may be loaded and outputted.

Chapter 12: Function Reference 167

PROGRAM
WREP2.C Partial code for using generated code under Windows.

...
long FAR PASCAL WndProc (HWND hWnd, UINT message, WPARAM wParam,

 LPARAM lParam)
{
 static CODE4 cb ;
 static REPORT4 *report ;

 switch (message)
 {
 case WM_COMMAND:
 switch(wParam)
 {
 case IDM_DOREPORT:
 report = buildReport(&cb, 1) ;
 if(report)
 {
 report4parent(report, hWnd) ;
 report4toScreen(report, 1) ;
 report4do(report) ;
 }
 break ;
 }
 break ;
...

Creating a Report from Scratch

Since CodeReporter generates source code for any report, it is not
recommended that reports be created from scratch. If customization of a
report is necessary, it may be done using a previously generated report's code
as a basis for the new custom report.

The following steps may be taken if it is necessary to create a report
manually.

1. Create the relation first. This may either be done using the
CodeBase 5 relation module functions, or a relation may be loaded from a
relation file with relate4retrieve.

2. Initialize the report structure by calling report4init. This sets up
some internal memory and sets many default settings.

3. Set up the applicable query and/or sort conditions using report4querySet
and report4sortSet.

168 CodeReporter

4. Modify any of the default settings with the following functions:
report4caption, report4currency, report4decimal,
report4hardResets, report4margins, report4pageSize,
report4separator, and report4titlePage.

5. Create the groups of the report with group4create. Since the page
header/footer and title/summary areas are automatically created by
report4init, it is unnecessary to create them.

6. Create the areas for the groups using area4create.

7. Create any report-wide calculations (if applicable) using the
CodeBase 5 function expr4calc_create.

8. Create and place the output objects in the appropriate areas using
their respective creation functions.

Once the report has been constructed in this manner, the normal report
sequence of 'load', 'do', and 'free' may be used to output the report.

Custom Output Drivers

The CodeReporter API comes with two different drivers for different
platforms: Microsoft Windows and MS-DOS. If the report functions are to
be used in other platforms, or if a custom display library (such as
CodeScreens) is to be used, it is necessary for the developer to create his/her
own equivalent to the report4do function.

The main functions used in a custom output driver are:

• • report4pageInit

• • report4generatePage

• • report4pageObjFirst

• • report4pageObjNext

• • report4pageFree

In order to properly use these functions, the following structures must be used
to properly output the data for a report.

Chapter 12: Function Reference 169

OBJECT4
Description: This structure is used to describe an evaluated output object. A

pointer to this structure is returned by the report4pageObj
functions.

Members:

objtype This flag is used to indicate the type of the current output object.
objtype may have any one of the following constant values:

obj4type_field info stores text representing the
contents of a field.

obj4type_expr info stores text representing the
contents of an expression.

obj4type_total info stores text representing the
value of a total.

obj4type_text info stores static text.

obj4type_hline info is blank. The horizontal
line is described by x, y, w, and h.

obj4type_vline info is blank. The vertical line
is described by x, y, w, and h.

obj4type_frame info contains two bytes which
are used to determine the state
of the fill and rounded corners.
If the left byte is '1', the frame is
filled. If the right byte is '1',
the frame has rounded corners.

alignment Output objects that evaluate to text (obj4type_field, obj4type_expr,
obj4type_text, obj4type_total) are justified along the left, right, or
center of the object. The possible values for alignment are:

justify4right Right justification.

justify4left Left justification.

justify4center Centered.

x This is the horizontal position of the upper left corner of the output
object in thousandths of an inch.

y This is the vertical position from the top of the page of the upper
left corner of the output object in thousandths of an inch.

w This is the width of the output object in thousandths of an inch.

h This is the height of the output object in thousandths of an inch.

 Info_len This is the size of the information stored in info for the output object.

info This is the information to be outputted for the object.

style_index This is an index into the report's style sheet.

See also: report4pageObjFirst, report4pageObjNext, style4index

170 CodeReporter

STYLE4

Description: This structure contains the information necessary to describe the
font, color, and attributes of the report's styles.

A pointer to the appropriate style structure may be obtained by
style4lookup and style4index.

Members:

name This is a null terminated character array containing the name of the
style as set in CodeReporter.

lfont This is a pointer to a Windows LOGFONT structure which describes
the typeface of the font used by the style.

color This is an unsigned long value that stores the RGB colors set for the
style. One byte for the red value, one byte for the green, and one
byte for the blue. Each byte can contain a value from 0 to 255
indicating the shade of color. Use the following macros to retrieve
the individual settings: R4GETRVALUE(rgb)
R4GETGVALUE(rgb) R4GETRVALUE(rgb)

point_size This is the size in points of the font used in the style

codes_before_len This is the length of the codes pointed to by codes_before.

codes_after_len This is the length of the codes pointed to by codes_after.

codes_before This is a character array containing the printer control codes
stored in the style sheet that turn 'on' a printer's attribute.

codes_after This is a character array containing the printer control codes
stored in the style sheet that turn 'off' a printer's attribute.

See also: style4index, style4create

Using the Custom Driver Shell
The basic structure of a report output driver is essentially the same no matter
for which environment or interface library the driver is intended.

Chapter 12: Function Reference 171

PROGRAM
DRSHELLC Listed below is the source code and in code documentation for a sample

custom interface driver shell.

int S4FUNCTION report4doDriverShell(REPORT4 *report)
{
 int rc, error ;
 OBJECT4 *obj ;
 STYLE4 *style ;

 if(report4pageInit(report) < 0) /* initialize the page structure */
 return -1 ;

 error = 0 ;
 while((rc = report4generatePage(report)) >= 0) /* fill the page */
 {
 if(rc == 2) /* the last page has been reached */
 break ;
 for(obj = report4pageObjFirst(report); obj != NULL && !error
 ; obj = report4pageObjNext(report))
 {
 /* cycle through all the evaluated output objects within the * report */
 switch(obj->objtype)
 {
 case obj4type_field:
 case obj4type_expr:
 case obj4type_total:
 case obj4type_text:
 /* textual output routine */

 if((style = style4index(report, obj->style_index)) == NULL)
 {
 obj = NULL ;
 error = 1 ;
 break ;
 }
 /* get information about the object's style
 * use style->color, style->lfont, and style->point_size
 * to construct the appropriate output font */

 if(report->output_handle == 1)
 {
 /* outputting to screen */

 /* position to coordinates obj->x, obj->y
 * and use a screen interface function to output the
 * text pointed to by obj->info to a length of
 * obj->info_len, using obj->w and obj->h if
 * necessary to handle word wrap and obj->alignment */
 }
 else
 {
 /* outputting to a printer */
 /* position to coordinates obj->x, obj->y
 * and use a printer interface function to output the

172 CodeReporter

 * text pointed to by obj->info to a length of
 * obj->info_len, using obj->w and obj->h if
 * necessary to handle word wrap and obj->alignment */
 }
 break ;
 case obj4type_hline:
 case obj4type_vline:
 /* Line drawing routine */
 if((style = style4index(report, obj->style_index)) == NULL)
 {
 obj = NULL ;
 error = 1 ;
 break ;
 }
 /* use the style->color to set the color for the lines*/

 if(report->output_handle == 1)
 {
 /* position to obj->x, obj->y and draw a
 * filled rectangle to obj->x+obj->w, obj->y+obj->h */
 }
 else
 {
 /* position to obj->x, obj->y and print a
 * filled rectangle to obj->x+obj->w, obj->y+obj->h */
 }
 break ;
 case obj4type_frame:
 /* box drawing routine */
 if((style = style4index(report, obj->style_index)) == NULL)
 {
 obj = NULL ;
 error = 1 ;
 break ;
 }
 /* use the style->color to set the color for the frame*/
 if(*((char *)obj->info) == 1)
 {
 /* set for rounded corners */
 }
 else
 {
 /* set for square corners */
 }

 if(*(((char *)obj->info)+1) == 1)
 {
 /* set for filled rectangle */
 }
 else
 {
 /* set for hollow rectangle */
 }

 if(report->output_handle == 1)
 {

Chapter 12: Function Reference 173

 /* draw the appropriate rectangle
 * from obj->x, obj->y to
 * obj->x+obj->w, obj->y+obj->h */
 }
 else
 {
 /* print the appropriate rectangle
 * from obj->x, obj->y to
 * obj->x+obj->w, obj->y+obj->h */
 }
 break ;
 default:
 /* ignore all other object types */
 }
 }
 /* clear output device for new page */
 }
 report4pageFree(report) ;
 if(report->code_base->error_code < 0 || error)
 return -1 ;
 return 0 ;
}

As it can be seen, the custom driver cycles through all of the evaluated output
objects outputting them individually, for each page of the report

This code assumes that the output device may be written to at any point
within the page. If output to a device is done on a line by line basis (such as
with a dot-matrix printer), it may be necessary to perform custom storage of
the output objects.

This may be done by creating a buffer in memory the size of the output
device and storing the output objects within it as they are retrieved. When
report4pageObjNext indicates that there are no more objects on the page,
this buffered copy of the page could be outputted.

Another option that may be possible is to cycle through the objects in the
page, creating a linked list of objects sorted by vertical and horizontal
position. When there are no more objects within the page, this sorted list may
be used to output the elements on a line by line basis.

It can be seen from these few examples that creating a custom report using
the CodeReporter API can be as simple or as complex as desired. In almost
every situation a combination of soft-coded reports and/or CodeReporter-
generated source code can create complex reports with a minimum of hand
coding.

174 CodeReporter

area4 Functions
The area4 functions are used for creating report output areas wherein output
objects may be placed. These functions are also used to iterate through the
output objects placed within a report area.

area4create
Usage: AREA4 *area4create(GROUP4 *group, long height, short isHeader, char

*suppressExpr)

Description: This function creates a report header or footer area for the specified group in
which output objects may be placed.

Parameters:

group This is a pointer to the group with which the new report area is associated.

height This (long) value is the height of the new report area in thousandths of an
inch.

isHeader This logical flag determines if the new report area should be associated with
the group's header or footer. If isHeader is non-zero (true) the new area is
associated with the group's header. If isHeader is zero (false) the new area
is associated with the group's footer.

suppressExpr This is a null terminated character array which points to a logical dBASE
expression used to determine whether or not the report area is to be
suppressed when a group reset condition occurs. When a group reset
condition occurs, suppressExpr is evaluated. If it evaluates to a .TRUE.
value, the report area is not outputted for that group reset condition. If it
evaluates to a .FALSE. value, the report area is outputted. If suppressExpr is
NULL or points to an array of blank spaces, the newly created area is never
suppressed.

area4create creates a copy of the suppressExpr parameter. As a result,
the memory for suppressExpr may be freed once this function is called.

Returns: area4create returns an AREA4 pointer if successful. If the area could
not be created, area4create returns a NULL value.

See Also: area4free, group4create, group4titleSummary

area4 Function Reference 175

area4free
Usage: void area4free(AREA4 *area)

Description: This function removes a specified report area from the report. In addition,
all memory associated with the report area is freed and all output objects
within the report area are removed and freed.

Parameters:

area This AREA4 pointer identifies the report area to free

See Also: area4create, group4free

area4numObjects
Usage: int area4numObjects(AREA4 *area)

Description: This function returns the current number of output objects placed within the
specified area.

Parameters:

group This AREA4 pointer is used to identify the area

Returns:

0 There are no output objects for the specified area.

Not Zero The number of output objects placed within the specified area.

See Also: area4objFirst, area4objNext, area4objLast, area4objPrev

area4objFirst
Usage: OBJ4 *area4objFirst(AREA4 *area)

Description: This function retrieves a pointer to the first output object placed in the
specified area. This function is used in conjunction with area4objNext to
iterate through the output objects within an area.

Parameters:

area This is a pointer to the area containing output objects.

Returns:

Not Zero An OBJ4 pointer for the first output object placed in the report area is
returned.

0 Error. area was invalid, or there are no output objects in the specified area.

See Also: area4objNext, area4objLast

176 CodeReporter

area4objLast
Usage: OBJ4 *area4objLast(AREA4 *area)

Description: This function retrieves a pointer to the last output object placed in the
specified area. This function is used in conjunction with area4objPrev to
iterate backwards through the output objects within an area.

Parameters:

area This is a pointer to the area containing output objects.

Returns:

Not Zero An OBJ4 pointer for the last output object placed in the report area is
returned.

0 Error. area was invalid, or there are no output objects in the specified area.

See Also: area4objPrev, area4objFirst

area4objNext
Usage: OBJ4 *area4objNext(AREA4 *area)

Description: This function retrieves a pointer to the next output within the specified area.
This function is used in conjunction with area4objFirst to iterate through
the output objects placed within the specified area.

Parameters:

area This is a pointer to the area containing output objects.

Returns:

Not Zero An OBJ4 pointer for the next output object placed in the report area is
returned.

0 Error. area was invalid, or the last output object retrieved was the last
output object in the area.

See Also: area4objFirst, area4objPrev

area4 Function Reference 177

area4objPrev
Usage: OBJ4 *area4objPrev(AREA4 *area)

Description: This function retrieves a pointer to the previous output within the specified
area. This function is used in conjunction with area4objLast to iterate
backwards through the output objects placed within the specified area.

Parameters:

area This is a pointer to the area containing output objects.

Returns:

Not Zero An OBJ4 pointer for the previous output object placed in the report area is
returned.

0 Error. area was invalid, or the last output object retrieved was the first
output object in the area.

See Also: area4objLast, area4objNext

area4pageBreak
Usage: void area4pageBreak(AREA4 *area, int allowBreaks)

Description: This function is used to allow or disallow page breaks within the specified
area. If this function is not called, areas will not allow page breaks to occur
within them.

Parameters:

area This AREA4 pointer is used to identify the area.

allowBreaks If allowBreaks is zero (false), a page break is not allowed to occur within
the area. If a page break would occur within the group, it is then outputted
on the next page. If allowBreaks is a positive non-zero value (true), a page
break may occur within the report area. If a page break would occur within
the report area, much as possible of the area is outputted on the current
page, and the remainder is outputted on the following page.

Returns:

>= 0 This function returns the previous allow page break setting.

< 0 area or allowBreaks is invalid.

178 CodeReporter

group4 Functions
The group4 functions are used to define the actions performed within a
subset of the composite data file. These actions are mostly involved with
outputting the report areas. These functions are also used to specify special
characteristics of the output, including swapping the header/footer area(s)
with those of the page, resetting the page and page number, etc.group4
functions are also used to iterate through the header and footer areas
associated with the group.

group4create

Usage: GROUP4 *group4create(REPORT4 *report, char *name, char *resetExpr)

Description: group4create creates a new group in the specified report. By default, the
new group is the outermost group of the report.

Parameters:

report This is a pointer to the report in which the new group is added.

name This is a null-terminated character array containing a unique descriptive
name for the group. If this parameter is NULL, the name of the group
defaults to "Group n", where n is the position of the group created.
group4create creates a copy of name.

resetExpr This is a null-terminated character array containing a dBASE expression
used to determine when the group resets. The report module evaluates this
expression for each record in the composite data file, and if its value
changes the group resets and outputs the areas for the group.

If resetExpr is NULL, the group resets for every record in the composite
data file.

Returns:

0 An error has occurred in creating the group.

Not Zero A pointer to the successfully created group is returned.

See Also: area4create, group4free

group4 Function Reference 179

group4footerFirst
Usage: AREA4 *group4footerFirst(GROUP4 *group)

Description: This function returns an AREA4 pointer to the first footer area created for
the group.

Parameters:

group This is a GROUP4 pointer for the group.

Returns: group4footerFirst returns an AREA4 pointer for the first footer area created
for the group. If the group does not have a footer area, this function returns
NULL.

See Also: group4headerfirst, group4footerNext, group4footerprev

group4footerNext
Usage: AREA4 *group4footerNext(GROUP4 *group, AREA4 *area)

Description: This function returns a pointer to the footer area created in the specified
group after the specified footer area. This function is generally used in
combination with group4footerFirst to step through the footer areas of a
group.

Parameters:

group This is a pointer to the group containing the area area.

area This is a pointer to the footer area used to locate the next footer area
created.

Returns: This function returns an AREA4 pointer to the footer area created after the
area footer area. If area is the last footer area created for the group, or if
area is NULL, group4footerNext returns NULL.

Unexpected results can occur if the area parameter is not a valid footer area for
the group group.

See Also: group4footerFirst, group4numFooters

180 CodeReporter

group4footerPrev
Usage: AREA4 *group4footerPrev(GROUP4 *group, AREA4 *area)

Description: This function returns a pointer to the footer area for the specified group
created immediately before the specified area. This function is generally
used in combination with area4lastFooter to step through the footer areas of
a group.

Parameters:

group This is a pointer to the group containing the area footer area.

area This is a pointer to the footer area used to locate the previously created
footer area.

Returns: This function returns an AREA4 pointer to the footer area created before the
area footer area. If area is the last footer area created for the group, or if
area is NULL, group4footerPrev returns NULL.

Unexpected results can occur if the area parameter is not a valid footer area for
the group group.

See Also: area4firstFooter, area4numFooters

group4free
Usage: void group4free(GROUP4 *group)

Description: This function removes the specified group from the report and frees any
associated memory. If the group has header and/or footer areas, they are
removed by calls to area4free.

Parameters:

group This is the pointer of the group to remove from the report.

See Also: group4create, area4free

group4headerFirst
Usage: AREA4 *group4headerFirst(GROUP4 *group)

Description: This function returns an AREA4 pointer to the first header area created for
the group.

Parameters:

group This is a GROUP4 pointer for the group.

Returns: group4headerFirst returns an AREA4 pointer for the first header area
created for the group. If the group does not have a header area, this function
returns NULL.

See Also: group4headerFirst, group4headerPrev, group4headerNext

group4 Function Reference 181

group4headerNext
Usage: AREA4 *group4headerNext(GROUP4 *group, AREA4 *area)

Description: This function returns a pointer to the header area created in the specified
group after the specified header area.

This function is generally used in combination with group4headerFirst to
step through the header areas of a group.

Parameters:

group This is a pointer to the group containing the area area.

area This is a pointer to the header area used to locate the next header area
created.

Returns: This function returns an AREA4 pointer to the header area created after the
area header area. If area is the header last area created for the group, or
if area is NULL, group4footerNext returns NULL.

Unexpected results can occur if the area parameter is not a valid header area for
the group group.

See Also: group4headerFirst, group4numHeaders

group4headerPrev
Usage: AREA4 *group4headerPrev(GROUP4 *group, AREA4 *area)

Description: This function returns a pointer to the header area for the specified group
created immediately before the specified area. This function is generally
used in combination with area4lastHeader to step through the header areas
of a group.

Parameters:

group This is a pointer to the group containing the area header area.

area This is a pointer to the header area used to locate the previously created
header area.

Returns: This function returns an AREA4 pointer to the header area created before the
area header area. If area is the last header area created for the group, or
if area is NULL, area4prevFooter returns NULL.

Unexpected results can occur if the area parameter is not a valid footer area for
the group group.

See Also: area4firstHeader, area4numHeaders

182 CodeReporter

group4numFooters
Usage: int group4numFooters(GROUP4 *group)

Description: This function returns the current number of footer areas for the specified
group.

Parameters:

group This GROUP4 pointer is used to identify the group.

Returns:

0 There are no footers for the specified group.

Not Zero The number of footer areas created for the specified group.

See Also: area4create, area4free

group4numHeaders
Usage: int group4numHeaders(GROUP4 *group)

Description: This function returns the current number of header areas for the specified
group.

Parameters:

group This GROUP4 pointer is used to identify the group.

Returns:

0 There are no headers for the specified group.

Not Zero The number of header areas created for the specified group.

See Also: area4create, area4free

group4 Function Reference 183

group4repeatHeader
Usage: int group4repeatHeader(GROUP4 *group, int repeatHeader)

Description: This function is used to determine whether or not the specified group's
header area(s) should be displayed at the top of a new page if inner groups
span a page break.

This function does not affect the page header. If this function is
called with repeatHeader set to '1', the header is displayed under the page
header (and any other higher positioned repeated headers) and before the
first header line of a lower positioned group.

Parameters:

group This is the group for which the repeat header option is set.

repeatHeader If repeatHeader is '1', the header is repeated on the next page. If it
contains a '0' value (the default), the header area is only outputted when it
encounters a reset condition.

If this function is not called, the header is not repeated.

Returns:

>= 0 The previous repeatHeader setting is returned.

< 0 Error.

See Also: group4swapHeader

group4resetExprSet
Usage: int group4resetExprSet(GROUP4 *group, char *resetExpr)

Description: This function changes the specified group's reset expression.

Parameters:

group This is the group for which the reset expression is set.

resetExpr This is a null terminated character array containing the new dBASE
expression used to determine when the areas of the group are outputted. If
resetExpr is NULL, the group reset expression is removed and the group
resets for every composite record.

Returns:

0 The group reset expression was successfully set.

< 0 Error.

See Also: group4create

184 CodeReporter

group4resetPage
Usage: int group4resetPage(GROUP4 *group, int resetPage)

Description: This function is used to determine whether a page break should be forced
before the specified group's header area is outputted.

Parameters:

group This is the group for which the reset page option is set.

resetPage This parameter may have two settings:

1 When resetPage is set to one, a page break is forced each time the specified
group encounters a reset condition.

0 When resetPage is set to zero, the default, no special measures are taken to
ensure that the group header is displayed on a new page.

If this function is not called, the page is not reset when the group resets.

Returns:

>= 0 The previous resetPage setting is returned.

< 0 Error.

See Also: group4resetPageNum

group4resetPageNum
Usage: int group4resetPageNum(GROUP4 *group, int resetPageNum)

Description: This function is used to determine whether a page break should be forced
before the specified group's header area is outputted. If the page break
option is set, the page number is also reset to '1'.

Parameters:

group This is the group for which the reset page numberoption is set.

resetPageNum This parameter may have two settings:

1 When resetPageNum is set to one, a page break is forced each time the
specified group encounters a reset condition. In addition, the page number
is set to '1'.

0 When resetPage is set to zero, the default, no special measures are taken to
ensure that the group header is displayed on a new page, and the page
number continues to accumulate.

Returns:

>= 0 The previous resetPage setting is returned.

< 0 Error.

See Also: PAGENO() dBASE Expression, group4resetPage

group4 Function Reference 185

group4swapFooter
Usage: int group4swapFooter(GROUP4 *group, int swap)

Description: This function is used to cause a group to swap its footer area with the page
footer area when the group resets. When the group encounters a reset
condition, the rest of the current page is skipped and the specified group's
footer area(s) are outputted instead of, and in the place of, the normal page
footer. The page footer is not outputted. If the group is not reset and a page
break occurs, the normal page footer is used.

Parameters:

group This pointer specifies the group whose footer area(s) are used in place of the
page footer area.

swap This logical flag determines whether or not the group should swap its footer
area. The possible values for swap are:

1 The footer of the group is swapped.

0 The footer of the group is not swapped. If this function is not called, this
value is assumed.

Returns:

>= 0 The previous swap value is returned.

< 0 Error.

See Also: group4swapHeader, report4pageHeaderFooter

group4swapHeader
Usage: int group4swapHeader(GROUP4 *group, int swap)

Description: This function is used to cause a group to swap its header area with the page
header area when the group resets. When the group encounters a reset
condition, the rest of the current page is skipped (the footers of all inner
groups are outputted on the current page) and the specified group's footer
area(s) are outputted at the top of the next page in the place of, and instead
of, the normal page header. The page header is not Outputted. If the group
is not reset and a page break occurs, the normal page header is used.

Parameters:

group This pointer specifies the group whose header area(s) are used in place of the
page header area.

swap This logical flag determines whether or not the group should swap its header
area. The possible values for swap are:

1 The header of the group is swapped.

0 The header of the group is not swapped. If this function is not called, this
value is assumed.

186 CodeReporter

Returns:

>= 0 The previous swap value is returned.

< 0 Error.

See Also: group4swapFooter, report4pageHeaderFooter

obj4 Function Reference 187

obj4 Functions
The obj4 functions are used for creating and modifying the output objects
within a report area. Objects are created with their type's creation function
and removed from the report with a their type's free function or obj4delete.

In addition, once an object is created, special formatting functions and style
functions may be called to alter the way in which the output object appears.

obj4bitmapStaticCreate
Usage: OBJ4 *obj4bitmapStaticCreate(AREA4 *area, HANDLE hDIB

, long x, long y, long width, long height)

Description: This function creates a graphic object using a handle to a Windows device-
independent bitmap. Once obj4bitmapStaticCreate creates a graphic output
object, the handle to the device-independent bitmap (hDIB) must not be
freed by the programmer. The bitmap is automatically freed by
obj4bitmapStaticFree. The bitmap is scaled to fit within the coordinates
provided. The aspect ratio of the bitmap is not necessarily maintained. The
image of the static graphic object is stored within the report file.

Parameters:

area This AREA4 pointer specifies the report area in which the new graphic
output object is placed.

hDIB This is a handle to a Windows device-independent bitmap.

x This is the horizontal coordinate, in 1000ths of an inch, where the left side of
the graphic object is placed.

y This is the vertical coordinate, in 1000ths of an inch (starting from the top of
the report area), where the top edge of the graphic object is placed.

width This is the horizontal width of the graphic output object, in 1000ths of an
inch.

height This is the vertical height of the graphic output object, in 1000ths of an inch.

Returns:

Not Zero A pointer to the new graphic output object is returned if its creation was
successful.

 0 Error. The graphic output object could not be created.

See Also: obj4bitmapStaticFree, obj4bitmapFileCreate

188 CodeReporter

obj4bitmapStaticFree
Usage: void obj4bitmapStaticFree(OBJ4 *obj)

Description: This function removes a static graphic output object (created with
obj4bitmapStaticCreate) from the report and frees any memory associated
with the bitmap and the output object.

Parameters:

obj This is a pointer to the static graphic output object to be freed.

See Also: obj4delete, obj4bitmapStaticCreate, report4free

obj4bitmapFileCreate
Usage: OBJ4 *obj4bitmapFileCreate(AREA4 *area, char *fileName, long x, long y,

long width, long height)

Description: This function creates a static graphic output object by opening the provided
Windows bitmap file (.BMP) and creating an internal copy of the image.
The bitmap file is closed once the graphic output object is created. The
bitmap is scaled to fit within the coordinates provided. The aspect ratio of
the bitmap is not necessarily maintained. When a report containing this type
of static graphic object is saved, only a reference to the file name is saved.
The actual image for the bitmap is re-loaded from the provided bitmap file
each time the report is executed.

Parameters:

area This AREA4 pointer specifies the report area in which the new graphic
output object is placed.

fileName This is a null terminated character array containing the drive, directory and
file name of a Windows bitmap. If a drive and/or directory is not provided,
the current drive/directory is assumed.

x This is the horizontal coordinate, in 1000ths of an inch, where the left side of
the graphic object is placed.

y This is the vertical coordinate, in 1000ths of an inch (starting from the top of
the report area), where the top edge of the graphic object is placed.

width This is the horizontal width of the graphic output object, in 1000ths of an
inch.

height This is the vertical height of the graphic output object, in 1000ths of an inch.

Returns:

Not Zero A pointer to the new graphic output object is returned if its creation was
successful.

 0 Error. The graphic output object could not be created.

See Also: obj4bitmapFileFree, obj4bitmapStaticCreate

obj4 Function Reference 189

obj4bitmapFileFree
Usage: void obj4bitmapFileFree(OBJ4 *obj)

Description: This function removes a static graphic output object (created with
obj4bitmapFileCreate) from the report and frees any memory associated
with the bitmap and the output object.

Parameters:

obj This is the pointer returned by obj4bitmapFileCreate for the graphic object
to remove from the report.

See Also: obj4bitmapFileCreate, obj4delete, report4free

obj4bitmapFieldCreate
Usage: OBJ4 *obj4bitmapFieldCreate(AREA4 *area, FIELD4 *field, long x,

long y, long width, long height)

Description: This function creates a dynamic graphic output object by opening the
Windows bitmap file (.BMP) described in the data file field and creating an
internal copy of the image. The bitmap file is closed once the graphic output
object is outputted. The bitmap is scaled to fit within the coordinates
provided. The aspect ratio of the bitmap is not necessarily maintained.
When a report containing this type of static graphic object is saved, only a
reference to the field is saved. The actual image for the bitmap is re-loaded
from the bitmap file specified in the current field's value each time the
graphic output object is outputted.

Parameters:

area This AREA4 pointer specifies the report area in which the new graphic
output object is placed.

field This is a FIELD4 pointer to a data file field containing the drive, directory,
and file name of a Windows bitmap file (.BMP). If the field does not
contain a drive and/or directory, the current drive/directory is assumed.

x This is the horizontal coordinate, in 1000ths of an inch, where the left side of
the graphic object is placed.

y This is the vertical coordinate, in 1000ths of an inch (starting from the top of
the report area), where the top edge of the graphic object is placed.

width This is the horizontal width of the graphic output object, in 1000ths of an
inch.

height This is the vertical height of the graphic output object, in 1000ths of an inch.

190 CodeReporter

Returns:

Not Zero A pointer to the new graphic output object is returned if its creation was
successful.

 0 Error. The graphic output object could not be created.

See Also: obj4bitmapFieldFree, obj4delete

obj4bitmapFieldFree
Usage: void obj4bitmapFieldFree(OBJ4 *obj)

Description: This function removes a static graphic output object (created with
obj4bitmapFileCreate) from the report and frees any memory associated
with the bitmap and the output object.

Parameters:

obj This is the pointer returned by obj4bitmapFieldCreate for the graphic
object to remove from the report.

See Also: obj4bitmapFieldCreate, obj4delete, report4free

obj4brackets
Usage: int obj4brackets(OBJ4 *obj, int useBrackets)

Description: This function specifies whether or not the specified numeric output
object should use brackets for negative values.

Parameters:

obj This is a pointer to the numeric object for which brackets are to be
used.

useBrackets This parameter determines whether brackets are used for negative
values. useBrackets may be one of the following values

1 Negative numbers are outputted within brackets. (i.e. (123))

0 Negative numbers use the negative sign. (i.e. -123)

Returns:

>= 0 The previous useBrackets setting is returned.

< 0 Error. obj or useBrackets were invalid.

See Also: obj4numericType, obj4displayZero

obj4 Function Reference 191

obj4dataFieldSet
Usage: int obj4dataFieldSet(OBJ4 *obj, char *destField, char type, int length, int

decimals)

Description: This function is used when outputting a report to a data file to associate a
report object with a field in the destination data file. This setting is used
only if report4output or report4toScreen are used to output the report to a
data file.

Parameters:

obj This is a pointer to the output object to be directed to a data file.

destField This is a null terminated character array containing the name of the data file
field in which the objects contents are placed.

type This is an uppercase character used to describe the type of data file field
within which the contents of the output object are placed. type may be one
of the following: 'C' (character), 'D' (date), 'L' (logical), 'N' (numeric).

length This is the maximum number of characters of the output object's contents to
be copied into the output data file.

decimals This is the number characters out of length to reserve as decimal places.
decimals is only used if type is 'N', otherwise it is ignored.

Returns:

0 The output object was successfully associated with the destination field.

 < 0 Error. obj or destField were invalid.

See Also: report4dataFileSet, report4dataGroup, d4create from CodeBase 5.

obj4calcCreate
Usage: OBJ4 *obj4calcCreate(AREA4 *area, EXPR4CALC *calc, long x, long y,

long width, long height)

Description: This function creates a calculation output object using a calculation created
with the CodeBase 6 expr4calcCreate function.

Parameters:

area This AREA4 pointer specifies the report area in which the new graphic
output object is placed.

calc This is a pointer to a calculation created with expr4calcCreate.

x This is the horizontal coordinate, in 1000ths of an inch, where the left side of
the calculation object is placed.

y This is the vertical coordinate, in 1000ths of an inch (starting from the top of
the report area), where the top edge of the calculation object is placed.

192 CodeReporter

width This is the horizontal width of the calculation output object, in 1000ths of an
inch.

height This is the vertical height of the calculation output object, in 1000ths of an
inch.

Returns:

Not Zero A pointer to the new calculation output object is returned if its creation was
successful.

 0 Error. The calculation output object could not be created.

See Also: expr4calc_create, obj4calcFree, obj4delete

obj4calcFree
Usage: void obj4calcFree(OBJ4 *obj)

Description: This function removes the calculation output object from the report and frees
any memory associated with the output object.

obj4calcFree does not free the memory associated with the actual calculation,
nor does it remove the calculation. Use CodeBase 5 function expr4calc_reset
or report4free to remove the calculation.

Parameters:

obj This is a pointer to the calculation object to be removed from the
report.

See Also: obj4calcCreate, obj4delete, report4free, CodeBase 5 function
expr4calc_reset

obj4dateFormat
Usage: int obj4dateFormat(OBJ4 *obj, char *dateFormat)

Description: This function sets the format (also known as a picture or mask) with which
the date output object uses during output. If the output object does not
evaluate to a date value, this function has no effect. If this function is not
called and the output object evaluates to a date value, the default date format
for the report is used (see report4dateFormat)

Parameters:

obj This is a pointer to the output object for which the date format is set.

dateFormat This null terminated character array contains the new date format used for
the output object. If dateFormat is NULL, the current date format is

obj4 Function Reference 193

ignored, and the report's default date format is used. obj4dateFormat makes
a copy of dateFormat.

Returns:

0 The date format for the output object was successfully set.

< 0 Error.

See Also: report4dateFormat

obj4decimals
Usage: int obj4decimals(OBJ4 *obj, int numDecimals)

Description: This function sets the number of decimals used in the output of numeric
output objects. Any unused decimal places are filled with zeros. If the
output object does not evaluate to a numeric value, this function has no
effect. All numeric output objects, with the exception of output objects
created with obj4fieldCreate, have no decimals set by default. Numeric
field output objects, by default, use the number of decimals specified by the
field.

Parameters:

obj This pointer specifies the object for which the decimals are set.

numDecimals This is the number of decimals used in the output object.

Returns:

0 Success.

< 0 Error. obj is invalid.

See Also: report4decimal

obj4delete
Usage: void obj4delete(OBJ4 *obj)

Description: This is a generic function to delete any type of output object.
obj4delete determines the type of the obj output object and calls the
appropriate "free" function.

Parameters:

obj This is a pointer to the object to remove from the report.

See Also: report4free

obj4displayOnce
Usage: int obj4displayOnce(OBJ4 *obj, char *supprExpr)

Description: This function causes the specified output object only to be outputted
when the value of the provided expression changes.

194 CodeReporter

Parameters:

obj This is a pointer to the object for which the display once option is set.

supprExpr This is a null terminated character array containing a dBASE
expression which is used to determine when the output object is
outputted. When the group the object is in is reset, this expression is
evaluated. If the expressions value has changed since the last time it
was evaluated, the output object is outputted. If the value is the same,
the output object is ignored.

Returns:

0 Success.

< 0 Error. obj is invalid.

obj4displayZero
Usage: int obj4displayZero(OBJ4 *obj, int displayZero)

Description: This function specifies whether or not to output a zero value for a numeric
output object. If the specified output object does not evaluate to a numeric
value, this function has no effect.

Parameters:

obj This is a pointer to the output object for which the display zero option is set.

displayZero This true/false flag may have two values:

1 When displayZero is one (true), zero values are outputted. If this function is
not called, this value is assumed.

0 If displayZero is zero (false), zero values are not outputted for the specified
output object.

Returns:

0 Success.

< 0 Error. obj was invalid.

See Also: obj4brackets, obj4numericType

obj4 Function Reference 195

obj4exprCreate
Usage: OBJ4 *obj4exprCreate(AREA4 *area, EXPR4 *expr, long x, long y, long

width, long height)

Description: This function creates an expression output object using an expression
created with the CodeBase 6 function expr4parse.

Parameters:

area This AREA4 pointer specifies the report area in which the new expression
output object is placed.

expr This is an EXPR4 pointer to a parsed expression.

x This is the horizontal coordinate, in 1000ths of an inch, where the left side of
the expression object is placed.

y This is the vertical coordinate, in 1000ths of an inch (from the top of the
report area), where the top edge of the expression object is placed.

width This is the horizontal width of the expression output object, in 1000ths of an
inch.

height This is the vertical height of the expression output
object, in 1000ths of an inch.

Returns:

Not Zero A pointer to the new expression output object is returned if its creation was
successful.

 0 Error. The expression output object could not be created.

See Also: CodeBase function expr4parse, obj4exprFree

obj4exprFree
Usage: void obj4exprFree(OBJ4 *obj)

Description: This function removes the specified expression output object from the report
and frees any memory associated with the object. This function
automatically frees the expression upon which the expression output object
is based by calling CodeBase 6 function expr4free.

Parameters:

obj This is a pointer to the expression output object to be removed from the
report.

See Also: CodeBase 6 function expr4free, obj4exprCreate, obj4delete

196 CodeReporter

obj4fieldCreate
Usage: OBJ4 *obj4fieldCreate(AREA4 *area, FIELD4 *field, long x, long y, long

width, long height)

Description: This function creates a field output object for the specified data file
field. Field output objects are automatically trimmed, so they may be
centered, left justified, or right justified.

Parameters:

area This AREA4 pointer specifies the report area in which the new field output
object is placed.

field This is a FIELD4 pointer to a data file field. This may be obtained by using
CodeBase 5 function d4field.

x This is the horizontal coordinate, in 1000ths of an inch, where the left side of
the field object is placed.

y This is the vertical coordinate, in 1000ths of an inch (starting from the top of
the report area), where the top edge of the field object is placed.

width This is the horizontal width of the field output object, in 1000ths of an inch.

height This is the vertical height of the field output object, in 1000ths of an inch.

Returns:

Not Zero A pointer to the new field output object is returned if its creation was
successful.

 0 Error. The field output object could not be created.

See Also: obj4fieldFree, obj4delete, CodeBase 5 function d4field

obj4fieldFree
Usage: void obj4fieldFree(OBJ4 *obj)

Description: This function removes a field output object from the report and frees any
memory associated with it. This function does not affect the data file field
referenced by the output object.

Parameters:

obj This is a pointer to the field output object (created with obj4fieldCreate) to
remove from the report.

See Also: obj4fieldCreate, obj4delete, report4free

obj4frameCorners
Usage: int obj4frameCorners(OBJ4 *obj, int rounded)

obj4 Function Reference 197

Description: This function is used with frame output objects to determine what type of
corners (rounded or square) should be used when the object is outputted.

Parameters:

obj This is a pointer to the frame output object for which the corner type is set.

rounded This parameter determines whether or not the corners of the frame object are
rounded. rounded may have one of the two values below:

1 The frame object is created with rounded corners.

0 The frame object is created with square (90 degree) corners. If this function
is not called, this value is assumed.

Returns:

>= 0 The previous rounded setting is returned.

< 0 Error. obj is invalid.

See Also: obj4frameCreate, obj4frameFree

obj4frameCreate
Usage: OBJ4 *obj4frameCreate(AREA4 *area, long x, long y, long width, long

height)

Description: This function creates a frame output object within the specified report area.
By default, the new frame has square corners and is hollow.

Parameters:

area This AREA4 pointer specifies the report area in which the new field output
object is placed.

x This is the horizontal coordinate, in 1000ths of an inch, where the left side of
the frame object is placed.

y This is the vertical coordinate, in 1000ths of an inch (starting from the top of
the report area), where the top edge of the frame object is placed.

width This is the horizontal width of the frame output object, in 1000ths of an inch.

height This is the vertical height of the frame output object, in 1000ths of an inch.

Returns:

Not Zero A pointer to the new frame output object is returned if its creation was
successful.

 0 Error. The frame output object could not be created.

See Also: obj4frameCorners, obj4frameFill, obj4frameFree, obj4lineWidth

198 CodeReporter

obj4frameFill
Usage: int obj4frameFill(OBJ4 *obj, int fill)

Description: This function is used to set the fill status for the specified frame output
object. If the frame is filled, the report module output functions fill the
frame with the color of the frame's selected style. If the frame is not filled
(the default), only the frame outline is outputted.

Parameters:

obj This is a pointer to the frame output object for which the fill status is set.

fill This parameter determines whether or not the frame is filled when outputted.
fill may have the following values:

1 If fill is set to one (true), the frame output object is filled.

0 If fill is set to zero (false), the frame output object is not filled.

Returns:

0 The previous value of fill is returned.

< 0 Error. obj or fill were invalid.

See Also: obj4frameCreate, obj4frameCorners, obj4lineWidth

obj4frameFree
Usage: void obj4frameFree(OBJ4 *obj)

Description: This function removes a frame object from the report and frees any memory
associated with the output object.

Parameters:

obj This is a pointer to the frame output object to be freed.

See Also: obj4frameCreate, obj4delete, report4free

obj4justify
Usage: int obj4justify(OBJ4 *obj, int justification)

Description: This function specifies whether objects that contain textual output
should be centered, left justified, or right justified within the bounds of
the object. All objects are left justified by default.

Parameters:

obj This specifies the object which is to be justified.

justification The justification parameter may be one of the following pre-defined constants:

obj4 Function Reference 199

justify4left Text for the output object is outputted beginning at the leftmost bounds of the
object.

justify4right Text for the output object is outputted beginning at the rightmost bounds of the
object with the last character of the object and proceeds to towards the left.

justify4center Text for the output object is centered within the bounds of the object.

Returns:

>= 0 The previous justification setting is returned.

< 0 Error.

See Also: obj4exprCreate, obj4fieldCreate, obj4totalCreate, obj4textCreate

obj4leadingZero
Usage: int obj4leadingZero(OBJ4 *obj, int leadingZero)

Description: This function is used to set the leading zero option for the specified output
object. The leading zero option is used when the output object evaluates to a
numeric value between 1 and -1 to determine whether or not a zero should be
placed in the units position of the fractional number.

Leading Zero No Leading Zero

0.33 .33

-0.33 -.33

3.33 3

Parameters:

obj This is a pointer to the numeric output for which the leading zero option is
set

leadingZero This parameter determines whether or not a leading zero is used for the
numeric output object. leadingZero may have the following values:

1 A leading zero is used for fractional numbers.

0 A leading zero is not used for fractional numbers. If this function is not
called, this value is assumed.

Returns:

>= 0 The previous value of leadingZero is returned.

< 0 Error. obj and/or leadingZero were invalid.

See Also: obj4displayZero

200 CodeReporter

obj4lineCreate
Usage: OBJ4 *obj4lineCreate(AREA4 *area, int vertical, long x, long y,

 long length)

Description: This function is used to create vertical and horizontal line output objects of a
specified length. The line output object has default thickness of one
thousandth of an inch (1/1000th inch).

Parameters:

area This is a pointer to the area in which the line output object is placed.

vertical This parameter determines whether the line output object is vertical or
horizontal. vertical may have one of the following values.

1 The line output object is a vertical line.

0 The line output object is a horizontal line.

x This is the horizontal coordinate, in 1000ths of an inch, of the beginning
point of the line.

y This is the vertical coordinate, in 1000ths of an inch (starting from the top of
the report area), that specifies where the line output object begins.

length This is the length of the line object in 1000ths of an inch.

Returns:

Not Zero A pointer to the new line output object is returned if its creation was
successful.

 0 Error. The line output object could not be created.

See Also: obj4lineFree, obj4lineWidth

obj4lineFree
Usage: void obj4lineFree(OBJ4 *obj)

Description: This function removes a line output object from the report and frees any
memory associated with the output object.

Parameters:

obj This is a pointer to the line object to be removed from the report.

See Also: obj4lineCreate, obj4delete, report4free

obj4 Function Reference 201

obj4lineWidth
Usage: int obj4lineFree(OBJ4 *obj, long width)

Description: This function changes the width of the lines used to draw line and frame
output objects.

Parameters:

obj This is a pointer to the line output object for which the length is set.

width This is the new width, in thousandths of an inch, of the line object.

Returns:

0 The width was successfully set.

-1 Error. obj was invalid or width was a negative number.

See Also: obj4lineCreate

obj4lookAhead
Usage: int obj4lookAhead(OBJ4 *obj, int lookAhead)

Description: This function sets the specified output object as a look ahead object. When
the object is outputted, it contains the value it would have in the group's
footer.

A look ahead total output object contains the value it would have when its total
reset expression changes and not necessarily the value it would have in the
group's footer.

Parameters:

obj This is a pointer to the output object for which the look ahead option is to be
set.

lookAhead This parameter determines whether or not an output object is a look ahead
object. lookAhead may be one of the following values:

1 The specified object is set to be a look ahead object.

0 The object is not set to be a look ahead object. If this function is not called,
this value is assumed.

Returns:

>= 0 The previous lookAhead value is returned.

< 0 Error. obj or lookAhead were invalid.

202 CodeReporter

obj4numericType
Usage: int obj4numericType(OBJ4 *obj, int numericType)

Description: This function determines how the specified numeric output object is to be
formatted.

Parameters:

obj This is a pointer to an output object that evaluates to a numeric value.

numericType This parameter is used to set the formatting of the numeric output object.
numericType may be any one of the following defined constants:

obj4numNumber The output object is not formatted in any way.

obj4numExponent The output object is formatted in scientific notation (ie. n.nnnnn e xx where
n is the numeric value and x is the exponential value)

obj4numCurrency The currency symbol (set with report4currency) is outputted before the
numeric value.

obj4numPercent When outputted, the percentage symbol ('%') immediately follows the
numeric value (multiplied by 100).

Returns:

>= 0 The previous setting of numericType is returned.

< 0 Error. obj or numericType was invalid.

See Also: report4currency, report4decimal, obj4decimals

obj4style
Usage: int obj4style(OBJ4 *obj, STYLE4 *style)

Description: By default, all output objects are created with the currently selected style. If
a style has not been selected, the report module default style "Plain Text" is
used. This function sets a specific style for the output object.

Parameters:

obj This is a pointer to the output object for which the style is set

style This is a pointer to the style used for the output object.

Returns:

0 Success.

< 0 Error.

See Also: style4create, style4lookup, style4next

obj4 Function Reference 203

obj4textCreate
Usage: OBJ4 *obj4textCreate(AREA4 *area, char *text, long x, long y, long width,

long height)

Description: This function creates a static text object.

Parameters:

area This AREA4 pointer specifies the report area in which the new text output
object is placed.

text This is a null terminated character array containing the text to be outputted.
obj4textCreate makes a copy of text.

x This is the horizontal coordinate, in 1000ths of an inch, where the left side of
the text object is placed.

y This is the vertical coordinate, in 1000ths of an inch (starting from the top of
the report area), where the top edge of the text object is placed.

width This is the horizontal width of the text output object, in 1000ths of an inch.

height This is the vertical height of the text output object, in 1000ths of an inch.

Returns:

Not Zero A pointer to the new text output object is returned if its creation was
successful.

 0 Error. The text output object could not be created.

See Also: obj4textFree, obj4delete

obj4textFree
Usage: void obj4textFree(OBJ4 *obj)

Description: This function removes the specified static text output object from the report
and frees any memory associated with the output object.

Parameters:

obj This is a pointer to the static text object to be removed from the report

See Also: obj4textCreate, obj4delete, report4free

204 CodeReporter

obj4totalCreate
Usage: OBJ4 *obj4totalCreate(AREA4 *area, TOTAL4 *total, long x, long y, long

width, long height)

Description: This function creates a total output object using a total created with
total4create.

Parameters:

area This AREA4 pointer specifies the report area in which the new total output
object is placed.

total This is a TOTAL4 pointer to a total created with total4create.

x This is the horizontal coordinate, in 1000ths of an inch, where the left side of
the total object is placed.

y This is the vertical coordinate, in 1000ths of an inch (starting from the top of
the report area), where the top edge of the total object is placed.

width This is the horizontal width of the total output object, in 1000ths of an inch.

height This is the vertical height of the total output object, in 1000ths of an inch.

Returns:

Not Zero A pointer to the new total output object is returned if its creation was
successful.

 0 Error. The total output object could not be created.

See Also: obj4totalFree, total4create, total4free, obj4lookAhead

obj4totalFree
Usage: void obj4totalFree(OBJ4 *obj)

Description: This function removes the specified total output object from the report and
frees any memory associated with the object. In addition, any other output
object or expression that uses the total is also removed from the report.
Finally, the total upon which the object is based is also freed.

This function can cause a chain-reaction of object deletions that can quickly
destroy a report.

Parameters:

obj This is the total output object to be removed from the report.

See Also: obj4totalCreate, total4create, total4free, obj4delete, report4free

relate4 Function Reference 205

relate4 Functions
The two relate4 functions listed herein provide the ability to save and retrieve
a relation from disk. These functions are not CodeReporter-specific and may
be used in any CodeBase 5 application to retrieve and save relations.

relate4retrieve
Usage: RELATE4 *relate4retrieve(CODE4 *cb, char *fileName, int openFiles,

char *dataPathName)

Description: This function retrieves a relation file and constructs the relation that was
saved with relate4save. In the process of loading the relation file,
relate4retrieve may also open the relation's data files.

Parameters:

cb This is a pointer to the application's CODE4 structure. This is used for
memory management and error handling.

fileName This is a null terminated character array which contains the file name
(including drive and directory) of the relation file. A file extension need not
be provided since the .REL extension is always used.

openFiles If openFiles is a true value (non-zero), relate4retrieve attempts to open the
data, index, and memo files referenced in the saved relation file if they are
not already opened. If relate4retrieve cannot find a certain data file
referenced in the relation file, that file and all lower level slave data files of
that file are omitted from the relation and an attempt is made to locate the
next data file.

If openFiles is a false value (zero), relate4retrieve assumes that all of the
data, index, and memo files are already opened. If a data file referenced in the
relation file is not opened, that file and all lower level slave data files in the
relation are omitted from the relation and the relate4retrieve continues to
build the relation.

dataPathName This parameter is a null terminated character array containing a new drive
and path for the data, index, and memo files stored in the relation file. If
dataPathName is NULL, the paths stored in the relation file are used. If no
paths were stored in the file, relate4retrieve attempts to open the files in the
current directory. If dataPathName is specified, it is used to override the
paths saved within the relation file.

206 CodeReporter

Returns:

Not Zero The relation was successfully retrieved from the specified relation file.

Zero An error occurred while reading the relation file or opening the relation's top
master data file. See the CODE4.error_code member variable for the
specific error setting.

See Also: relate4save, relate4init, relate4free

relate4save
Usage: int relate4save(RELATE4 *relate, char *fileName, int savePathNames)

Description: This function saves the specified relation in a relation file.

Parameters:

relate This is a pointer to the relation that is to be saved to a relation file.

fileName This is a null terminated character array which contains the file name
(including drive and directory) of the relation file. A file extension need not
be provided since the .REL extension is always used.

savePathNames If this parameter contains a true value (non-zero), relate4save saves the full
path name of the files used in the relation. If savePathNames contains a
false value (zero), only the actual file name is saved.

Returns:

0 The relation file was successfully saved.

r4no_create The relation file could not be created. This is generally caused when
fileName conflicts with a file that already exists, or if the application does
not have read/write privileges to the desired drive.

< 0 Error.

See Also: relate4retrieve

report4 Function Reference 207

report4 Functions
The report4 functions provide a means of specifying report-wide settings,
such as page width, margins, currency symbol, whether output goes to the
screen, the selected printer, etc.

report4caption
Usage: int report4caption(REPORT4 *report, char *caption)

Description: This function sets the text of the caption for the report output window when
the report is sent to the screen.

Parameters:

report This is a pointer to the report for which the report output window caption is
set.

caption This is a null terminated character array containing the text to be placed in
the caption portion of the output window. report4caption makes a copy of
caption.

Returns:

0 The caption was set successfully.

< 0 Error.

report4currency
Usage: int report4currency(REPORT4 *report, char *currency)

Description: This function sets the text to be displayed immediately to the left of numeric
output objects that are formatted as currency values.

Parameters:

report This is a pointer to the report for which the currency characters are set.

currency This is a null terminated character array containing the currency symbol(s).
currency may contain up to ten (10) characters. report4currency makes a
copy of currency. If this function is not called, the dollar symbol ($) is
assumed.

Returns:

0 The currency character(s) were set successfully.

< 0 Error.

See Also: obj4numericType

208 CodeReporter

report4dataDo
Usage: int report4dataDo(REPORT4 *report)

Description: This function outputs the report to a data file as specified in the report's data
file template, or with functions obj4dataFieldSet, report4dataFileSet, and
report4dataGroup.

Parameters:

report This is a pointer to the report to be outputted to a data file.

Returns:

0 Success.

< 0 Error. report was invalid, or did not contain a data file template.

See Also: obj4dataFieldSet, report4dataFileSet, report4dataGroup

report4dataFileSet
Usage: int report4dataFileSet(REPORT4 *report, char *destFile)

Description: This function sets the file name used to create the output data file when
report output is directed to a data file by report4dataDo.

Parameters:

report This is a pointer to the report for which the data file name is set.

destFile This is a null terminated character array containing the drive, directory and
file name of the data file where report output is stored. If the drive and/or
directory is not provided, the current directory is assumed.

Returns:

0 Success.

< 0 Error. report or destFile were invalid.

See Also: obj4dataFieldSet, report4dataGroup

report4 Function Reference 209

report4dataGroup
Usage: int report4dataGroup(REPORT4 *report, GROUP4 *group)

Description: This function identifies the group whose reset condition generates a new
record in the output data file. The output objects are stored in the resultant
record containing the values they would have if they were outputted in the
group's group footer area.

Parameters:

report This is a pointer to the report with which the group and data file is
associated.

group This is a GROUP4 pointer for the group which generates records in the
output data file.

Returns:

0 Success.

< 0 Error. report or group were invalid.

See Also: report4groupLookup, obj4dataFieldSet, report4dataFileSet

report4dateFormat
Usage: int report4dateFormat(REPORT4 *report, char *format)

Description: This function sets the default date format for the specified report. All new
output objects that evaluate to a date value, by default, use this format for
output. When the report is initially created, the value of the
CODE4.date_format member variable is stored within the report's default
date format.

Parameters:

report This is a pointer to the report for which the date format is set.

format This is a null terminated character array which contains the default date
format. This string should contain the picture formatting characters ('D', 'M',
'C', 'Y'). report4dateFormat creates a copy of format, so format may point
to temporary memory.

Returns:

0 Success.

< 0 Error. invalid report, or not enough memory to copy format.

See Also: obj4dateFormat

210 CodeReporter

report4decimal
Usage: int report4decimal(REPORT4 *report, char decimalChar)

Description: This function sets the character to be outputted to separate whole numbers
from fractional numbers within a numeric output object.

Parameters:

report This is a pointer to the report for which the decimal character is used.

decimalChar This is the character used as the decimal. If this function is not called, the
decimal point ('.') is assumed.

Returns:

0 Success.

< 0 Error. report was invalid.

See Also: obj4decimals

report4do
Usage: int report4do(REPORT4 *report)

Description: This high-level function causes the specified report to be outputted to the
selected device.

When outputting the report under Windows, report4do disables the report's
parent window (specified by report4parent) and creates an output window
that processes the report. The output window sends the report's parent
window a CRM_REPORTCLOSED message once the report is completed.

If this function is to be used, it is necessary to first call report4parent. Failure to
do so can cause unpredictable results.

If the report is outputted in a non-Windows application, report4do sends the
report to the device specified by report4output and returns once the report is
completed.

Parameters: report specifies the report to be outputted.

Returns:

0 Success. The report was successfully outputted. Under Windows, this value
is returned immediately, even though the output window may not have
completed the output of the report.

r4terminate A relation was unable to be made and the error action specified with
relate4error_action was relate4terminate.

< 0 Error.

See Also: report4toScreen, report4parent, report4printerSelect, report4printerSet,
report4output

report4 Function Reference 211

report4free
Usage: void report4free(REPORT4 *report, int freeRelate, int closeFiles)

Description: This function frees all memory associated with the report, including all
output objects, all groups, and all areas.

In a Windows application, this function should only be called after the report's
parent window has received a CRM_REPORTCLOSED message. Calling
report4free immediately after report4do under Windows, can cause
unpredictable results.

Parameters:

report This is the report to be freed from memory.

freeRelate If this parameter contains a true value (non-zero), the memory associated
with the report's relation is automatically freed. If a false value (zero) is
passed, the relation is unaffected.

closeFiles This parameter, when it contains a true value (non-zero), causes report4free
to automatically close the data, index, and memo files referenced in the report.
If closeFiles is false (zero), or if freeRelate is false, this setting is ignored.

See Also: report4pageFree, and relate4free in the CodeBase 5 manual

report4generatePage
Usage: int report4generatePage(REPORT4 *report, HDC hDC)

Description: This low-level function is used to store the next page of the report in a
Windows device context such as a bitmap device context or a printer device
context. This function does not clear the device context prior to storing the
page. If this function is used to output the report to a printer, it is the
programmer's responsibility to send the following codes to the device with
the Windows Escape function: SETABORTPROC (if desired),
STARTDOC, NEWFRAME, ENDDOC. If this function is used to output
the report to a bitmap (to display in a window, save to disk, etc.), it is the
programmer's responsibility to create a memory device context containing a
bitmap large enough to store a report page.

Parameters:

report This is a pointer to the report from which a page is retrieved.

hDC This is a handle to a valid Microsoft Windows device context in which the
next page of the report is placed. It is the programmer's responsibility to free
hDC once it is no longer needed.

Returns:

0 The new page was successfully stored in hDC.

2 There are no more pages in the report. hDC is unaltered.

< 0 Error. report and/or hDC were invalid.

See Also: report4init

212 CodeReporter

report4generatePage
Usage: int report4generatePage(REPORT4 *report)

Description: This low-level function is used to generate an internal structure containing
the information for the next page of a report. The values of the evaluated
output objects within the report page may be retrieved from this internal
buffer using report4pageObjFirst and report4pageObjNext.

Parameters:

report This is a pointer to the report for which the next page is retrieved.

Returns:

0 The new page was successfully stored in the internal buffer.

2 There are no more pages in the report.

< 0 Error. report was invalid.

See Also: report4pageObjFirst, report4pageObjNext, report4init

report4groupFirst
Usage: GROUP4 *report4groupFirst(REPORT4 *report)

Description: report4groupFirst returns a pointer to the innermost group, which is the first
group created in the report. This function, in conjunction with
report4groupNext is used to iterate through the groups within a report.

Parameters:

report This is a pointer to the report from which the first group is retrieved.

Returns:

0 The specified report does not have a group created.

Not Zero This is a pointer to the innermost group of the report.

See Also: report4groupNext, report4numGroups

report4 Function Reference 213

report4groupLast
Usage: GROUP4 *report4groupLast(REPORT4 *report)

Description: report4groupLast returns a pointer to the outermost group, which is the last
group created in the report. This function, in conjunction with
report4groupPrev is used to iterate through the groups within a report.

Parameters:

report This is a pointer to the report from which the last group is retrieved.

Returns:

0 The specified report does not have a group created.

Not Zero This is a pointer to the outermost group of the report.

See Also: report4groupPrev, report4numGroups

report4groupLookup
Usage: GROUP4 *report4groupLookup(REPORT4 *report, char *name)

Description: This function is used to obtain a GROUP4 pointer to specified named group.

Parameters:

report This is a pointer to the report for which the groups belong.

name This is a null terminated character array which contains the name of the
group for which a GROUP4 pointer is desired.

Returns:

Not Zero A pointer to the specified group is returned.

0 name did not match with any named groups in the specified report.

See Also: group4create

214 CodeReporter

report4groupNext
Usage: GROUP4 *report4groupNext(REPORT4 *report, GROUP4 *group)

Description: This function is used to obtain a GROUP4 pointer to the group created
immediately after the specified group. This is used in conjunction with
group4first to iterate through the groups in a report.

Parameters:

report This is a pointer to the report for which the groups belong.

group This is a pointer to an inner group which is used to obtain the next outer
group.

Returns:

0 There were no more groups in the report. group is the outermost group.

Not Zero A pointer to the next group is returned.

See Also: group4first, report4numGroups

report4groupPrev
Usage: GROUP4 *report4groupPrev(REPORT4 *report, GROUP4 *group)

Description: This function is used to obtain a GROUP4 pointer to the group created
immediately before the specified group. This is used in conjunction with
report4groupLast to iterate through the groups in a report.

Parameters:

report This is a pointer to the report for which the groups belong.

group This is a pointer to an outer group which is used to obtain the previously
created inner group.

Returns:

0 There were no more groups in the report. group is the innermost group.

Not Zero A pointer to the next group is returned.

See Also: report4groupLast, report4numGroups

report4 Function Reference 215

report4hardResets
Usage: int report4hardResets(REPORT4 *report, int hardResets)

Description: This function is used to specify the method in which groups with the reset
page option generate new pages.

Parameters:

report This is a pointer to the report for which the hard reset flag is set.

hardResets This parameter is used to determine how page resets are handled.
hardResets may be one of the following values:

1 Always generate a new page before a group with the reset page flag is
outputted.

0 Only generate a new page for a group with a reset page flag set if the group
is being reset as a result of its own reset condition being changed. If the
group is outputted as a result of a higher level group being reset, a new page
is not generated. If this function is not called, this value is assumed.

Returns:

>= 0 The previous hardResets value is returned.

< 0 Error. report and/or hardResets was invalid.

See Also: group4resetPage

report4init
Usage: REPORT4 *report4init(RELATE4 *relate)

Description: This function initializes a report structure with default values, and returns a
report pointer which may be used with the rest of the report module
functions. This function is automatically called by report4retrieve.Once the
report is completed, call report4free to free up the memory associated with
the report structure.

report4init sets the following default values:

Margins: Left: 1/4 inch, Right: 1/4 inch, Top 0, Bottom 0

Page Size: 8 1/2 x 11 inches

Decimal Point: '.'

Thousands Separator ','

Currency Symbol "$"

Default Style: "Plain Text" (Windows: MS Serif 10pt., Non-
Windows: No control codes)

Title/Summary Group Size of zero

216 CodeReporter

Page Header/Footer Group Size of zero

Parameters:

relate This is the relation upon which the report is based.

Returns:

Not Zero The report was successfully initialized and a pointer to the report structure is
returned.

Zero Error. The report could not be initialized. See the CODE4.error_code
setting for more information.

See Also: report4retrieve, relate4retrieve, report4do, report4free

report4margins
Usage: int report4margins(REPORT4 *report, long left, long right, long top, long

bottom, int unitType)

Description: This function is used to change the default margins of the report.

Some output devices, such as laser printers, have a hardware margin which is
not under software control. report4margins checks for this condition and will
not allow the margins to violate the physical margins of the device.

Parameters:

report This is a pointer to the report for which the margins are set.

left This is the size of the left margin in the provided increments.

right This is the size of the right margin in the provided increments.

top This is the size of the top margin in the provided increments.

bottom This is the size of the bottom margin in the provided increments.

unitType This is the unit of measure for the above margin settings. In graphical user
interfaces, 1000ths of an inch may conveniently be used. In character-
based interfaces, it is often more convenient to use characters. unitType
may be one of the following values:

1 The units listed are in characters.

0 The units listed are in 1000ths of an inch.

If unitType is set for characters, this function assumes ten (10) characters per
inch and six (6) lines per inch.

Returns:

0 The margins were successfully set.

< 0 Error.

See Also: report4pageSize

report4 Function Reference 217

report4numGroups
Usage: int report4numGroups(REPORT4 *report)

Description: This function returns the current number of groups within the report. This is
useful when iterating through the groups in the report.

Parameters:

report This REPORT4 pointer indicates the report for which the number of groups
is desired.

Returns:

0 There are no groups in the specified report.

> 0 This is the number of groups added to the report.

< 0 An error has occurred.

See Also: report4groupNext, report4groupPrev, group4first, report4groupLast

report4numStyles
Usage: int report4numStyles(REPORT4 *report)

Description: This function returns the current number of styles within the report. This is
useful when iterating through the styles of the report.

Parameters:

report This REPORT4 pointer indicates the report for which the number of styles is
desired.

Returns:

> 0 This is the number of styles within the report. There will always be at least
one style within the report.

< 0 An error has occurred.

See Also: report4styleFirst, report4styleNext, report4styleLast, report4stylePrev

218 CodeReporter

report4output
Usage: int report4output(REPORT4 *report, int outputHandle, int useStyles)

Description: This function is called prior to report generation and is used to instruct
report4do to send the report to a system handle such as 'standard out',
'standard print', or an open file. If this function is not called, report4do sends
report output to the 'standard out' monitor.

report4do outputs reports by using the standard C library function write()
which uses a system handle to output text. report4do passes outputHandle
to write().

This function is used when outputting a report to a file.

Parameters:

report This is the report for which a destination is set.

outputHandle This is a standard C system handle as returned by C functions such as open()
and sopen(). Other common handles that are pre-defined by the C language
are:

1 This is 'standard out' which is by default the monitor.

4 This is 'standard print'. On IBM computers this is usually the
printer on the LPT1 port.

useStyles This parameter is used to determine whether or not the information outputted
by report4do should contain the printer control codes as defined within the
style sheets. useStyles must be one of the following values:

1 The printer pre- and post-control codes are outputted to the
specified handle.

0 The printer control codes are ignored and only the text for the
output objects are outputted.

Returns:

0 The settings were successfully set.

< 0 Error. report was invalid.

See Also: report4do, report4toScreen

report4 Function Reference 219

report4pageFree
Usage: int report4pageFree(REPORT4 *report)

Description: This is a low-level function which is used internally to free the memory
associated with the internal representation of an output page. This function
is automatically called at the end of the report by report4do.

Parameters:

report This is a pointer to the report for which the output page is freed.

Returns:

0 The page was successfully freed.

< 0 Error.

See Also: report4free, report4generatePage

report4pageHeaderFooter
Usage: GROUP4 *group4pageHeaderFooter(REPORT4 *report)

Description: This function returns a GROUP4 pointer to the report's page header and
footer "group." The returned group, which is automatically created by
report4init, cannot be deleted.

Parameters:

report This is a pointer to the report that contains the desired page header/footer
"group."

Returns: A GROUP4 pointer to the page header/footer group is returned.

See Also: area4create, report4init

report4pageInit
Usage: int report4pageInit(REPORT4 *report)

Description: This low-level function is used to create an internal page buffer for report
output. This function is automatically called by report4do.

Parameters:

report This is a pointer to the report for which the internal page buffer is created.

Returns:

0 The page buffer was successfully created.

< 0 Error.

220 CodeReporter

See Also: report4pageFree, report4do

report4pageMarginsGet
Usage: int report4marginsGet(REPORT4 *report, long *left, long *right, long *top,

long *bottom)

Description: This function is used to retrieve the margins set for the report. All margins
are retrieved in increments of a thousandths of an inch.

Parameters:

report This is a pointer to the report for which the margins are retrieved.

left This is a pointer to a (long) variable where the size of the left margin is
stored.

right This is a pointer to a (long) variable where the size of the right margin is
stored.

top This is a pointer to a (long) variable where the size of the top margin is
stored.

bottom This is a pointer to a (long) variable where the size of the bottom margin is
stored.

Returns:

0 The margins were successfully retrieved.

< 0 Error. report was invalid.

See Also: report4margins

report4pageObjFirst
Usage: OBJECT4 *report4pageObjFirst(REPORT4 *report)

Description: This low level function is used to retrieve an internal representation of the
evaluated first output object from the current page of the report.

Parameters:

report This is a pointer to the report for which the first object of the current output
page is retrieved.

Returns:

>= 0 An OBJECT4 pointer for the evaluated first object of the current output page
is returned.

0 There are no objects on the current page.

See Also: report4pageObjNext

report4 Function Reference 221

report4pageObjNext
Usage: OBJECT4 *report4pageObjNext(REPORT4 *report)

Description: This low-level function retrieves the next evaluated output object from the
current page of the report.

Parameters:

report This is a pointer to the report for which the next object of the current output
page is retrieved.

Returns:

>= 0 An OBJECT4 pointer for the evaluated next object of the current output
page is returned.

0 There are no objects on the current page.

See Also: report4pageObjFirst

report4pageSize
Usage: int report4pageSize(REPORT4 *report, long height, long width,

int unitType)

Description: This function is used to set the vertical and horizontal page size for the
report. If this function is not called within a Windows application, the
current page size of the selected printer is used. If this function is not called
in a non-Windows application, the default page size of 25 x 80 characters is
used.

Parameters:

report This is a pointer to the report for which the page size is set.

height This is the vertical size of the output page in the specified units.

width This is the horizontal size of the output page in the specified units.

unitType This parameter is used to determine the unit of measure used by height and
width. unitType may be one of the following values:

1 The height and width are in characters.

0 The height and width are in 1000ths of an inch.

Returns:

0 The page size was successfully set.

< 0 Error.

See Also: report4margins, report4printerSelect

222 CodeReporter

report4pageSizeGet
Usage: int report4pageSizeGet(REPORT4 *report, long *width, long *height)

Description: This function retrieves the current size of the report page, in thousandths of
an inch.

Parameters:

report This is a pointer to the report for which the page size is retrieved.

width This is a pointer to a long variable which is to receive the horizontal width of
the page.

height This is a pointer to a long variable which is to receive the vertical height of
the page.

Returns:

0 The page size was successfully retrieved.

< 0 Error. report was invalid.

See Also: report4pageSize, report4marginsGet

report4parent
Usage: int report4parent(REPORT4 *report, HWND parent)

Description: This function specifies the parent window used for report output. report4do
disables the parent window while the report is being output and sends it the
CRM_REPORTDONE message once the report output window has been
closed.

Parameters:

report This is a pointer to the report for which the parent window is set.

parent This is a Microsoft Windows window handle which is used for report output.

It is necessary to call this function before report4do. Failure to do so can cause
unpredictable results.

See Also: report4do, report4free

report4 Function Reference 223

report4printerSelect
Usage: void report4printerSelect(REPORT4 *report)

Description: This function invokes the "Printer Setup" common dialog to specify a printer
for the report. In order for this function to work correctly, the application
must be running under Microsoft Windows NT/95/98 (or higher) or have the
Microsoft Windows common dialog dynamic link library COMMDLG.DLL
in the system path.

Parameters:

report This is a pointer to the report that is configured for the selected printer.

report4printerDC
Usage: HDC report4printerDC(REPORT4 *report, HDC hDC)

Description: This function is used to specify the handle to a printer device context to
which report output is sent.

This low-level function is useful if the handle to the printer device context is
obtained using standard Windows function calls. For an interactive selection
of the report output device, use report4printerSelect.

The specified printer device context is not used by report4do if
report4toScreen is called to send output to the screen.

Parameters:

report This is a pointer to the report that is configured for the specified printer
device context.

hDC This is a handle to the printer device context in which the report output is to
be placed.

See Also: report4toScreen, report4printerSelect

report4querySet
Usage: int report4querySet(REPORT4 *report, char *queryExpr)

Description: This function sets a query for the relation set. The queryExpr expression is
evaluated for each composite record. If the expression evaluates to a .TRUE.
value, the record is used in the report. If queryExpr evaluates to a .FALSE.
value, the record is ignored.

This function overwrites any query expression set with relate4query_set.

224 CodeReporter

Parameters:

report This is a pointer to the report for which a query is set.

queryExpr This is a logical dBASE expression that is used to place a limit on the
composite data file. If queryExpr is NULL, all the records of the composite
data file are used within the report.

Field names in the query expression must use the data file qualifier. eg. "DBF-
>NAME='SMITH' "

Returns:

0 The query was successfully set.

< 0 Error.

See Also: relate4query_set, relate4sort_set, report4sortSet

report4retrieve
Usage: REPORT4 *report4retrieve(CODE4 *cb, char *fileName, int openFiles,

char *dataPath)

Description: This function retrieves a report file from disk and constructs the appropriate
REPORT4 structure. Implicitly, a relation set is also created along with a
corresponding RELATE4 structure.

Report files created with CodeReporter and/or report4save are not necessarily
portable from one operating system to another. If a report is needed on another
platform, it may be necessary to link the report with CodeReporter generated
source code.

Parameters:

cb This is a pointer to the application's CODE4 structure. This is used for
memory management and error handling.

fileName This is a null terminated character array which contains the drive, directory
and file name of the report file. If no file name extension is provided,
report4retrieve assumes a .REP extension.

openFiles If openFiles contains a true value (non-zero), report4retrieve attempts to
open the data files referenced in the report if they are not already open. If a
referenced data file cannot be located, it and any dependant slave data files
are not included in the report. Any output objects and/or expressions that
use the missing data files are automatically removed from the report. If
openFiles contains a false value (zero), all files are assumed to be open.

dataPath If dataPath is NULL, report4retrieve uses the paths stored in the report file
to locate the report's data files. If the report file does not include path names
to the data files, report4retrieve assumes the data files are in the current
directory. If dataPath is not NULL, it is assumed to be a null terminated
character array containing the drive and/or directory where all of the report's

report4 Function Reference 225

data files may be located. The dataPath directory overrides any paths stored
within the report.

Returns:

Not Zero The report was successfully loaded. The returned REPORT4 pointer may be
used with other report module functions.

0 Error. The report could not be loaded. This may result from an inability to
locate the top master data file, or allocate enough memory for the report.

See Also: relate4retrieve

report4save
Usage: int report4save(REPORT4 *report, char *fileName, int savePaths)

Description: This function saves a report into a soft-coded report file which may be
retrieved either by the CodeReporter application or report4retrieve.

report4save does not alter the report in memory in any way. It may be called
before or after report4do with no ill effects.

If a report with graphic output objects is loaded in a non-Windows application and
saved with report4save, the graphic output objects are not saved in the new
report file.

Parameters:

report This is a pointer to the report to be saved to disk.

fileName This is a null terminated character array containing the drive, directory, and
file name of the file in which the report is saved. If an extension is provided,
it is used; otherwise the default extension of .REP is appended to the file
name.

If a drive and/or path is not provided, the current directory is assumed.

savePaths If savePaths contains a true value (non-zero), report4save includes the drive
and path for each file referenced in the report within the report file. If
savePaths contains a false value (zero), only the file names are saved within
the report.

Returns:

0 The report was successfully saved to the specified file.

< 0 Error. report was invalid, or the specified file could not be created.

See Also: report4retrieve

226 CodeReporter

report4separator
Usage: int report4separator(REPORT4 *report, char separator)

Description: This function specifies the character to be used as the separator between
hundreds and thousands, between thousands and millions, etc.

Parameters:

report This is a pointer to the report for which the numeric separator is specified.

separator This is the character used as a numeric separator. If no numeric separator is
desired, pass a zero (0) for separator.

If this function is not called, a comma (,) is used as the default numeric
separator.

Returns:

0 The numeric separator was successfully set.

< 0 Error. report was invalid.

See Also: obj4numericType

report4sortSet
Usage: int report4sortSet(REPORT4 *report, char *sortExpr)

Description: This function specifies the sorted order in which the composite records of
the report are retrieved.

This function overwrites any sort expression set with relate4sort_set.

Parameters:

report This is a pointer to the report for which the sorted order applies.

sortExpr This is a null terminated character array which contains the dBASE
expression used to sort the composite data file. This expression may
evaluate to a Character, Date, or Numeric value.

Field names in the query expression must use the data file qualifier. "DBF-
>NAME='SMITH' " is an example of a valid query expression.

Returns:

0 Success.

< 0 Error or report was invalid.

See Also: relate4sort_set, report4querySet

report4 Function Reference 227

report4styleFirst
Usage: STYLE4 *report4styleFirst(REPORT4 *report)

Description: This function returns a pointer to the first style created for the report. This is
useful, in conjunction with report4styleNext, for iterating through the styles
created for a report.

Parameters:

report This is a pointer to the report which contains styles.

Returns: A pointer to the first style created for the report is returned.

See Also: report4styleNext, report4styleLast

report4styleLast
Usage: STYLE4 *report4styleLast(REPORT4 *report)

Description: This function returns a pointer to the last style created for a report. This
function is useful, in conjunction with report4stylePrev, for iterating
backwards through the styles of the report.

Parameters:

report This is a pointer to the report containing some styles.

Returns: report4styleLast returns a pointer to the last style created. If there is only
one style in the report, this function also points to the first style in the report.

See Also: report4stylePrev, report4styleFirst

report4styleNext
Usage: STYLE4 *report4styleNext

Description: This function returns a pointer to the next style created for a report. This
function is useful in conjunction with report4styleFirst to iterate forwards
through the styles within a report.

Parameters:

report This is a pointer to the report containing some styles.

Returns:

Not Zero A STYLE4 pointer to the next style in the report is returned.

0 There are no more styles within the report.

See Also: report4styleFirst, report4stylePrev

228 CodeReporter

report4styleSelect
Usage: int report4styleSelect(REPORT4 *report, STYLE4 *style)

Description: This function sets the specified style as the "selected" style. All new output
objects are created with this style.

Parameters:

report This is a pointer to the report in which the style is selected.

style This is a STYLE4 pointer to a previously created style that is set as the
selected style.

Returns:

0 The style was successfully set.

< 0 Error. report or style were invalid.

report4styleSelected
Usage: STYLE4 *report4styleSelected(REPORT4 *report)

Description: This function returns a pointer to the reports "selected" style.

Parameters:

report This is a pointer to the report in which the style is selected.

Returns: report4styleSelected returns a STYLE4 pointer to the previously created
selected style. By default, the last style created is the selected style (unless
report4styleSelect is used). If no styles have been created, this function
returns a pointer to the report module default "Plain Text" style.

report4styleSheetLoad
Usage: int report4styleSheetLoad(REPORT4 *report, char *fileName, int overRide)

Description: This function adds the styles from a CodeReporter style sheet to the
specified report.

Parameters:

report This is a pointer to the report in which the new styles are added.

fileName This is a null terminated character array containing the drive, directory, and
file name of the CodeReporter style sheet. All CodeReporter style sheets
have a .CRS extension. If fileName does not contain a drive and/or
directory, the current directory is assumed.

overRide This parameter is used to resolve conflicts that occur when styles in the
report and styles in the style sheet have the same name. If overRide contains
a true value (non-zero) report4styleSheetLoad uses the styles in the style

report4 Function Reference 229

sheet when conflicts occur. If overRide contains a false value (zero), the
original styles in the report are maintained.

Returns:

1 The style sheet was successfully loaded.

0 Error. The file could not be found, it was corrupted, or it was out of date.

report4styleSheetSave
Usage: int report4styleSheetSave(REPORT4 *report, char *fileName)

Description: This function saves the styles within the specified report to a CodeReporter
style sheet.

Parameters:

report This is a pointer to the report from which the styles are saved.

fileName This is a null terminated character array containing the drive, directory, and
file name of the file in which the styles are saved. If a drive and/or directory
are not provided, the style sheet is saved in the current directory. All
CodeReporter style sheets have a .CRS file extension.

Returns:

1 The style sheet was successfully saved.

0 The style sheet could not be saved. This is usually do the attempting to save
over the top of an existing file.

report4titlePage
Usage: int report4titlePage(REPORT4 *report, int titlePage)

Description: This function is used to force a page break after the title REPORT area(s) are
outputted.

Parameters:

report This is a pointer to the report for which the title page setting applies

titlePage This parameter determines whether or not a page break follows the title area.
titlePage may have one of the following settings:

1 A page break is generated after the title area(s) are outputted.

0 A page break is not generated after the title area(s) are outputted. If this
function is not called, this value is assumed.

Returns:

>= 0 The previous titlePage setting is returned.

< 0 Error. report or titlePage were invalid.

230 CodeReporter

report4titleSummary
Usage: GROUP4 *report4titleSummary(REPORT4 *report)

Description: This function is used to return a GROUP4 pointer for the report's
title/summary group.

Parameters:

report This is a pointer to the report from which the title/summary group is
retrieved.

Returns:

Not Zero A GROUP4 pointer to the group's title/summary group is returned.

0 Error. report is invalid.

report4toScreen
Usage: int report4toScreen(REPORT4 *report, int toScreen)

Description: This function is used to indicate that report4do should create a window and
send the report output to it, or instead send the report to selected printer. By
default, report4do sends report output to a window.

Parameters:

report This is a pointer to the report that is to be outputted to the screen.

toScreen This parameter is used in Windows applications to determine where the
report should be sent. toScreen may have one of the following values:

1 A window is created and report output is handled by the
window procedure.

0 Report output is sent to the selected printer.

Returns:

>= 0 The previous toScreen setting is returned.

< 0 Error. report or toScreen is invalid.

See Also: report4output, report4do

style4 Function Reference 231

style4 Functions
The style4 functions are used to group a set of font attributes under a
common name which may be associated with output objects using obj4style.

style4color
Usage: int style4color(STYLE4 *style, R4COLORREF color)

Description: This function changes the Windows RGB color for the specified style.

Parameters:

style This is a pointer to the style for which the color is set.

color This parameter is a Windows COLORREF value that describes the color for
the specified style.

Returns:

0 The color was successfully set.

< 0 Error. style was invalid.

style4create
Usage: STYLE4 *style4create(REPORT4 *report, R4LOGFONT *font,

char *name, R4COLORREF color, int pointSize)

Description: This function adds a new style to the report using the specified Windows
font.

Parameters:

report This is a pointer to the report with which the new style is associated.

font This is a pointer to a Windows LOGFONT structure that describes the font
used for the new style.

name This is a null terminated character array containing the name of the new
style. name may point to up to 19 characters.

color This parameter is a Windows COLORREF value that describes the color for
the new style.

pointSize This is the size of the font, in points, used for the new style.

Returns:

Not Zero The new style was successfully created. The returned pointer may be
considered valid and may be used with other report module functions.

232 CodeReporter

0 Error. The style was not created.

style4create
Usage: STYLE4 *style4create(REPORT4 *report, char *name, int beforeLen, char

*beforeCodes, int afterLen, char *afterCodes)

Description: This function creates a non-Windows style which is used to store the printer-
specific control codes that describe a particular printer typeface.

Parameters:

report This is a pointer to the report with which the new style is associated.

name This is a null terminated character array containing the name of the new
style. name may point to up to 19 characters.

beforeLen This is the length of the printer control code character array that is sent
before the text of the output object.

beforeCodes This is a character array containing the printer control codes sent before the
text of the output object. These codes should turn 'on' a specific printer
attribute or typeface.

afterLen This is the length of the printer control code character array that is sent after
the text of the output object.

afterCodes This is a character array containing the printer control codes sent after the
text of the output object. These codes should turn 'off' a specific printer
attribute or typeface.

Returns:

Not Zero The new style was successfully created. The returned pointer may be
considered valid and may be used with other report module functions.

0 Error. The style was not created.

style4delete
Usage: int style4delete(REPORT4 *report, char *styleName)

Description: This function removes a named style from the report and frees any memory
associated with the style. If the deleted style was the selected style, the first
style in the report becomes the selected style.

Parameters:

report This is a pointer to the report that contains the style to be deleted.

styleName This is a null terminated character array that contains the name of the style to
be deleted. style4delete iterates through the styles in the report, comparing
the stored names to styleName. If a match is found, the style is removed
from the report.

Returns:

1 The style was successfully located and removed.

style4 Function Reference 233

0 A style with the styleName name was not found within the report.

style4free
Usage: int style4free(REPORT4 *report, STYLE4 *style)

Description: This function removes the specified style from the report and frees any
memory associated with the style. If the deleted style was the selected style,
the first style in the report becomes the selected style.

Parameters:

report This is a pointer to the report that contains the style to be deleted.

style This is a pointer to the style to be deleted.

Returns:

1 The style was successfully removed.

 0 Error. report and/or style were invalid.

style4index
Usage: STYLE4 *style4index(REPORT4 *report, int styleIndex)

Description: This function returns a STYLE4 pointer to the style in the styleIndexth
position.

Parameters:

report This is a pointer to the report which contains the desired style.

styleIndex This is an index into the reports internal style sheet. This function is used to
quickly retrieve a pointer to the styleIndexth style in the report. The first
style in the report is style 1 (one). This is used with the report4pageObj
functions.

Returns:

Not Zero This is a STYLE4 pointer to the specified style

0 styleIndex was greater than the number of styles within the report or zero.

See Also: style4lookup, report4pageObjFirst

234 CodeReporter

style4lookup
Usage: STYLE4 *style4lookup(REPORT4 *report, char *styleName)

Description: This function returns a STYLE4 pointer to the style with the specified name.

Parameters:

report This is a pointer to the report which contains the desired style.

styleName This is a null terminated character array which contains the name of the style
that is looked up.

Returns:

Not Zero This is a STYLE4 pointer to the named style.

0 A style with the styleName name could not be located in the specified
report.

See Also: style4index

total4 Function Reference 235

total4 Functions
The total4 functions are used to specify the information necessary for a total.
Once created the TOTAL4 pointer may be used with obj4totalCreate to add
a total output object to the report.

total4addCondition
Usage: int total4create(TOTAL4 *total, char *addConditionSrc, int logical)

Description: This function is used to specify a conditional accumulation for the total
output object. If addConditionSrc is a logical dBASE expression (and
logical is non-zero), the total is accumulated whenever the condition
evaluates to a .TRUE. value . If addConditionSrc is any other type of
expression (and logical is zero), the total is accumulated when the value of
the evaluated condition changes. If this function is not called, the total is
accumulated for every record in the composite data file.

Parameters:

total This is a pointer to the total for which the conditional accumulation is
applied.

addConditionSrc This is a null terminated character array containing dBASE expression
which is used to determine when the total is accumulated. This expression
may evaluate to any type, excluding memo. When this evaluated expression
evaluates to a .TRUE. value (and logical is non-zero) or if the evaluated
expression changes (and logical is zero), the total is accumulated.

logical This flag is used to determine whether the total is accumulated on a logical
condition or a change of value. When logical contains a true value (non-
zero) addConditionSrc is assumed to evaluate to a logical value. When
logical contains a false value (zero), the total is accumulated only when the
evaluated expression changes. It is possible to have addConditionSrc
evaluate to a logical value and have logical be false (zero). In this case, the
total would be accumulated when the evaluation of the expression changes
from to and from to

Returns:

0 The condition was successfully added to the total output object.

< 0 Error. An invalid parameter was passed, addConditionSrc did not evaluate
to a logical value when logical was set to true (non-zero), or
addConditionSrc could not be evaluated.

See Also: obj4totalCreate, expr4calc_create

236 CodeReporter

total4create
Usage: TOTAL4 *total4create(REPORT4 *report, char *totalName, char

*totalExpr, int type, char *resetExpr)

Description: This function defines a total which is used in obj4totalCreate.

Parameters:

report This is a pointer to the report for which the total is to be added.

totalName This is a null terminated character array containing the descriptive name
used in other dBASE expressions to reference the total. This name may not
contain spaces.

totalExpr This is a null terminated character array containing a numeric dBASE
expression upon which the total is created. This may simply be a data file
field, or a calculation created with CodeBase 5 function expr4calc_create.

All data file fields referenced within the totalExpr expression must have a field
qualifier.

type This flag is used to determine how the total is to maintain its value when the
total output object is evaluated. type may have one of the following constant

values:

total4average This constant creates a total that maintains the arithmetic mean (average)
value of the totalExpr expression.

total4highest This constant creates a total that stores the highest value encountered for the
totalExpr expression.

total4lowest This constant creates a total that stores the lowest value encountered for the
totalExpr expression.

total4sum This constant creates a total that maintains an arithmetic sum of all values
encountered for the totalExpr expression.

resetExpr This is a null terminated character array that contains a dBASE expression
which is used to determine when the value of the total output object is reset
to its initial value.

Returns:

Not Zero A pointer to a successfully created total is returned.

0 There were problems parsing the dBASE expressions.

See Also: obj4totalCreate, expr4calc_create

total4free
Usage: void total4free(TOTAL4 *total)

Description: This low-level function frees any memory associated with the total
definition. This function is automatically called by obj4totalFree.

Parameters:

total This is a pointer to the total definition to be created.
See Also: obj4totalFree, total4create

Appendix A: dBASE Functions 237

Appendix A: dBASE Functions
dBASE Expression Functions

The functions listed below can be used as a dBASE expression or as part of
an dBASE expression. Like dBASE operators, constants, and fields,
functions return a value. Functions always have a function name and are
followed by a left and right bracket. Values (parameters) may be inside the
brackets.

Function List
CTOD(Char_Value)

The character to date function converts a character value into a date value:

eg. " CTOD("11/30/88") "

The character representation is always in the format specified by the
Code4::dateFormat member variable which is by default "MM/DD/YY".

DATE()
The system date is returned.

DAY(Date_Value)
Returns the day of the date parameter as a numeric value from "1" to "31".

eg. "DAY(DATE())"

Returns "30" if it is the thirtieth of the month.

DESCEND()
(Clipper Compatibility Only) Returns a complemented version of an
expression.

DEL()
Returns "*" if the current record is marked for deletion. Otherwise " " is
returned.

DELETED()
Returns .TRUE. if the current record is marked for deletion.

DTOC(Date_Value)
The date to character function converts a date value into a character value.

238 CodeReporter

The format of the resulting character value is specified by the
Code4::dateFormat member variable which is by default "MM/DD/YY".

eg. " DTOC(DATE()) "

Returns the character value "05/30/87" if the date is May 30, 1987.

DTOS(Date_Value)
The date to string function converts a date value into a character value. The
format of the resulting character value is "CCYYMMDD".

e.g. ." DTOS(DATE()) "

Returns the character value "19870530" if the date is May 30, 1987.

IIF(Log_Value, True_Result, False_Result)
If 'Log_Value' is .TRUE. then IIF returns the 'True_Result' value. Otherwise,
IIF returns the 'False_Result' value. Both True_Result and False_Result must
be the same length and type. Otherwise, an error results.

eg. "IIF(VALUE << 0, "Less than zero ", "Greater than zero")"

e.g. ."IIF(NAME = "John", "The name is John", "Not John ")"

LTRIM(Char_Value)
This function trims any blanks from the beginning of the expression.

MONTH(Date_Value)
Returns the month of the date parameter as a numeric.

eg. " MONTH(DT_FIELD) "

Returns 12 if the date field's month is December.

PAGENO()
When using the report module or CodeReporter, this function returns the
current report page number.

RECCOUNT()
The record count function returns the total number of records in the database:

eg. " RECCOUNT() "

Returns 10 if there are ten records in the database.

RECNO()
The record number function returns the record number of the current record.

STOD(Char_Value)
The string to date function converts a character value into a date value:

eg. " STOD("19881130") "

Appendix A: dBASE Functions 239

The character representation is in the format "CCYYMMDD".

STR(Number, Length, Decimals)
The string function converts a numeric value into a character value.
"Length" is the number of characters in the new string, including the decimal
point. "Decimals" is the number of decimal places desired. If the number is
too big for the allotted space, *'s will be returned.

eg. " STR(5.7, 4, 2) " returns " '5.70' "

The number 5.7 is converted to a string of length 4. In addition, there will be
2 decimal places.

eg. " STR(5.7, 3, 2) " returns " '***' "

The number 5.7 cannot fit into a string of length 3 if it is to have 2 decimal
places. Consequently, *'s are filled in.

SUBSTR(Char_Value, Start_Position, Num_Chars)
A substring of the Character value is returned. The substring will be
'Num_Chars' long, and will start at the 'Start_Position' character of
'Char_Value'.

eg. " SUBSTR("ABCDE", 2, 3)" returns " 'BCD' "

eg. "SUBSTR("Mr. Smith", 5, 1)" returns " 'S' "

TIME()
The time function returns the system time as a character representation. It
uses the following format: HH:MM:SS.

e.g. " TIME() " returns " 12:00:00 " if it is noon.

e.g. " TIME() " returns " 13:30:00 " if it is one thirty PM.

TRIM()
This function trims any blanks off the end of the expression.

UPPER(Char_Value)
A character string is converted to uppercase and the result is returned.

VAL(Char_Value)
The value function converts a character value to a numeric value.

eg. " VAL('10') " returns " 10 "

eg. " VAL("-8.7") " returns " -8.7 "

YEAR(Date_Value)
Returns the year of the date parameter as a numeric:

eg. "YEAR(STOD('19920830')) " returns " 1992 "

Appendix B: Keyboard Interface 241

Appendix B: Keyboard Interface
CodeReporter requires a Microsoft compatible mouse. There are certain
actions, such as placing output objects, which may only be done with a
mouse.

Most other actions may be performed both with the mouse and with the
keyboard. This appendix systematically lists the keyboard controls and the
actions they perform.

Menu Accelerators
Menu accelerators are a single keystroke that perform a menu action, thus
saving the time and keystrokes necessary to activate many of the common
CodeReporter tasks.

Ctrl-A
AREA | NEW HEADER AREA. This accelerator creates a new header area for the
selected group.

Ctrl-C
EDIT | COPY. A copy of the currently selected output objects are placed
within the Windows clipboard, where they may be retrieved in CodeReporter
using EDIT | PASTE.

Ctrl-Insert
EDIT | COPY. A copy of the currently selected output objects are placed
within the Windows clipboard, where they may be retrieved in CodeReporter
using EDIT | PASTE.

Ctrl-E
ALIGN | CENTER. This accelerator moves the selected object so that its center
is at the horizontal center of the report. If multiple objects are selected, this
accelerator aligns the centers of all of the selected output objects with the
center of the first object selected.

242 CodeReporter

Ctrl-F
AREA | NEW FOOTER AREA. This accelerator creates a new footer area for the
selected group.

Ctrl-G
GROUPS | NEW. This accelerator invokes the "Group Settings" dialog and
creates a new group, including a header and footer area.

Ctrl-H
SENSITIVITY | SPACE HORIZONTAL. This accelerator moves all selected output
objects so that the horizontal distance between them is equal. The first and
the last selected output objects are not moved.

Ctrl-L
ALIGN | LEFT. This accelerator moves all selected output objects so that their
left edges are aligned with the left edge of the first selected object.

Ctrl-M
GROUPS | MODIFY. This accelerator invokes the "Group Settings" dialog for
the currently selected group.

Ctrl-O
AREA | MODIFY AREA. This accelerator invokes the "Modify Area" dialog for
the selected area.

Ctrl-P
FILE | PRINT. This accelerator invokes the "Print" dialog which may be used
to output the current report to the specified printer.

Ctrl-R
ALIGN | RIGHT. This accelerator moves all selected output objects so that their
right edges are aligned with the right edge of the first selected object.

Ctrl-S
FILE | SAVE. This accelerator saves the current report to disk. If the report
has not previously been saved, CodeReporter prompts the designer for a file
name.

Appendix B: Keyboard Interface 243

Ctrl-T
SENSITIVITY | SPACE VERTICAL. This accelerator moves all selected output
objects so that the vertical distance between them is equal. The first and the
last selected output objects are not moved.

Ctrl-V
EDIT | PASTE. CodeReporter is put into insertion mode for output objects
within the Windows clipboard. If the Windows clipboard contains simple
text from another application, CodeReporter creates a text output object. If
the Windows clipboard contains a bitmap image, it is placed within the report
as a static graphic object.

Shift-Insert
EDIT | PASTE. CodeReporter is put into insertion mode for output objects
within the Windows clipboard. If the Windows clipboard contains simple
text from another application, CodeReporter creates a text output object. If
the Windows clipboard contains a bitmap image, it is placed within the report
as a static graphic object.

Ctrl-W
FILE | PRINT PREVIEW. This accelerator creates a full screen window and
outputs the report within the window.

Ctrl-X
EDIT | CUT. The currently selected output objects are removed from the
report and placed within the Windows clipboard, where they may be retrieved
in CodeReporter using EDIT | PASTE.

Shift-Delete
EDIT | CUT. The currently selected output objects are removed from the
report and placed within the Windows clipboard, where they may be retrieved
in CodeReporter using EDIT | PASTE.

Delete
OBJECT | DELETE. This accelerator deletes the currently selected output
object. If no object is selected, nothing happens.

Esc
OBJECT | NONE. This accelerator moves CodeReporter out of insertion
mode.

244 CodeReporter

Report Design Screen
The report design screen accepts the following keystrokes as equivalencies
for many mouse generated actions.

Tab
The Tab key sets the next object in an area as the "selected" output object. If
the Tab key is pressed while the last object in an area is selected, the first
object is selected. If no object is selected, pressing the Tab key selects the
first object in the selected area.

Shift-Tab
The Shift-Tab key combination performs the same selection process as the
Tab key. The only difference is that the Shift-Tab key combination cycles
backwards through the objects in the selected area.

Ctrl-Tab
The Ctrl-Tab key combination is used to multiply select the output objects in
the selected area. This key combination selects the next object in the area
while keeping all previously selected output objects selected.

Shift-Ctrl-Tab
The Shift-Ctrl-Tab key combination performs the same selection process as
the Ctrl-Tab combination. The only difference is that this combination cycles
backwards through the objects in the selected area.

Page Up
These keystrokes scroll the report design screen up one screen full. If all of
the report design elements are visible on the current screen, these keys do
nothing.

Shift-Up Arrow
These keystrokes scroll the report design screen up one screen full. If all of
the report design elements are visible on the current screen, these keys do
nothing.

Appendix B: Keyboard Interface 245

Page Down
These keystrokes scroll the report design screen down one screen full. If all
of the report design elements are visible on the current screen, these keys do
nothing.

Shift-Down Arrow
These keystrokes scroll the report design screen down one screen full. If all
of the report design elements are visible on the current screen, these keys do
nothing.

Shift-Left Arrow
This keystroke scrolls the report design screen to the left a little bit. If all of
the report design elements are visible on the current screen, this key does
nothing.

Shift-Right Arrow
This keystroke scrolls the report design screen to the right a little bit. If all of
the report design elements are visible on the current screen, this key does
nothing.

Ctrl-Left Arrow
This keystroke scrolls the report design screen all the way to the right edge of
the window. If all of the report design elements are visible on the current
screen, this key does nothing.

Ctrl-Right Arrow
This keystroke scrolls the report design screen all the way to the right edge of
the window. If all of the report design elements are visible on the current
screen, this key does nothing.

Return
This keystroke invokes the Object Menu for the currently selected output
object. If no objects are selected, this key does nothing.

246 CodeReporter

Appendix C: Cursors 247

Appendix C: Cursors
When the report designer has put CodeReporter into insertion mode for a
particular output object type, the mouse cursor alters its shape to indicate the
insertion mode as well as the type of object being inserted. Listed below are
the different types of cursors and the type of output object they insert. Each
cursor has a "cross-hairs". The intersection of the two lines indicates the
position of the upper left corner the new output object occupies.

CodeReporter may be moved out of insertion mode by selecting the
"None" button on the button bar, or by pressing the ESC key.

This cursor is used to indicate that CodeReporter is in
insertion mode for calculation output objects.

This cursor is used to indicate that CodeReporter is in
insertion mode for expression output objects.

This cursor is used to indicate that CodeReporter is in
insertion mode for field output objects. If multiple fields
were selected, they are placed horizontally or vertically (as
set in the "Field Layout" dialog") from this point.

This cursor is used to indicate that CodeReporter is in
insertion mode for frame output objects.

This cursor is used to indicate that CodeReporter is in
insertion mode for horizontal line output objects. Lines are
created with a default length.

This cursor is used to indicate that CodeReporter is in
insertion mode for vertical line output objects. Lines are
created with a default length.

This cursor indicates that CodeReporter is in insertion
mode for objects placed in the Windows clipboard. If
multiple output objects were cut or copied to the clipboard,
they are pasted in relation to the first object pasted.

248 CodeReporter

This cursor is used to indicate that CodeReporter is in
insertion mode for text output objects.

This cursor is used to indicate that CodeReporter is in
insertion mode for total output objects.

Appendix D: ASCII Chart - Partial 249

Appendix D: ASCII Chart - Partial
Listed below are the most commonly used characters in printer control codes, and
their hexadecimal equivalent. Most printer manuals list the hexadecimal values
for the control codes. This is provided merely as an additional reference.

ASCII Dec Hex ASCII Dec Hex ASCII Dec Hex

ESC 27 1B D 68 44 h 104 68

! 33 21 E 69 45 i 105 69

" 34 22 F 70 46 j 106 6A

35 23 G 71 47 k 107 6B

$ 36 24 H 72 48 l 108 6C

% 37 25 I 73 49 m 109 6D

& 38 26 J 74 4A n 110 6E

' 39 27 K 75 4B o 111 6F

(40 28 L 76 4C p 112 70

) 41 29 M 77 4D q 113 71

* 42 2A N 78 4E r 114 72

+ 43 2B O 79 4F s 115 73

, 44 2C P 80 50 t 116 74

- 45 2D Q 81 51 u 117 75

. 46 2E R 82 52 v 118 76

/ 47 2F S 83 53 w 119 77

0 48 30 T 84 54 x 120 78

1 49 31 U 85 55 y 121 79

2 50 32 V 86 56 z 122 7A

3 51 33 W 87 57 { 123 7B

4 52 34 X 88 58 | 124 7C

5 53 35 Y 89 59 } 125 7D

6 54 36 Z 90 5A ~ 126 7E

7 55 37 [91 5B

8 56 38 \ 92 5C

9 57 39] 93 5D

: 58 3A ^ 94 5E

; 59 3B _ 95 5F

< 60 3C ` 96 60

250 CodeReporter

= 61 3D a 97 61

> 62 3E b 98 62

? 63 3F c 99 63

@ 64 40 d 100 64

A 65 41 e 101 65

B 66 42 f 102 66

C 67 43 g 103 67

Appendix E: Error Codes

Appendix E: Error Codes
This appendix documents the error codes that are returned by the
CodeReporter API functions when an error occurs. Other CodeBase error
codes, which may be returned as well, are documented in the respective
CodeBase reference manual.

Constant Name Value Meaning

e4report -810 Report Error

General reporting error. Any report error not covered below is
an e4report error.

e4style_create -811 Error Creating Style

The style could not be created due to a duplicate style name
existing, or a memory shortage.

 e4style_select -812 Error Selecting Style

An invalid STYLE4 pointer was provided to a style selection
function.

 e4style_index -813 Error Finding Style

The specified style could not be located. This may result from
either passing an invalid STYLE4 pointer, or from passing a
non-existant style name to a style look up function.

 e4area_create -814 Error Creating Area

The area could not be created due to a failure to allocate
memory for the area or parse the suppression expression.

 e4group_create -815 Error Creating Group

The group could not be created due to a lack of memory, or
invalid GROUP4 parameter.

 e4group_expr -816 Error Setting Group Reset Expression

The group reset expression could not be parsed correctly.

 e4total_create -817 Error Creating Total

The total output object could not be created due to a lack of
memory, due to an invalid numeric calculation, or an invalid

252 CodeReporter

reset expression.

 e4obj_create -818 Error Creating Object

The output object could not be created due to a lack of memory,
or to an invalid AREA4 pointer.

 e4rep_win -819 Error In Windows Output

An error occurred registering the Windows output window class,
or CreateWindow failure.

 e4rep_out -820 Error In Report Output

The evaluation of an output object caused an error. This is
usually due to a lack of memory.

 e4rep_save -821 Error Saving Report

An error occurred while saving a report file. This may be due to
the file already existing, a lack of disk space, or a file creation
problem.

 e4rep_ret -822 Error Retrieving Report

The report file could not be retrieved from disk. This may be a
result of not being able to locate the top master data file, or from
the report file being corrupt.

 e4rep_data -823 Error in creating output data file

The report could not be sent to an output data file due to a file
creation error, or a data storage error.

Appendix F: Basic/Pascal API 253

Appendix F: Basic/Pascal API
This section documents the available functions for running and modifying
reports when using the CodeBase Basic or Pascal API. Using these functions
you can perform such operations as retrieving reports from disk, displaying
and modifying reports on the fly, and saving any changes back to disk.

All the functions listed in this section, except for three, are report4 functions.
The three exceptions are relate4 functions. These functions can be used in
conjunction with CodeReporter's FILE | SAVE RELATION option to visually
build sophisticated relations that can be saved to disk. These relations can
then be retrieved for use in your application.

PROGRAM Visual Basic test application
REPTEST.BAS

Sub ReportTest (cb As Long, Report As Form)

 Dim lReport As Long

 'Retrieve report file TUT1.REP
 lReport = report4retrieve(cb, App.Path + "TUT1", 1, App.Path)

 'Check for Error
 If lReport = 0 Then
 rc = code4errorCode(cb, 0)
 Exit Sub
 End If

 'Change some of the report's attributes
 rc = report4caption(lReport, "New Caption")
 rc = report4currency(lReport, "£")

 'Change report's relation set
 rc = report4querySet(lReport, "STUDENT->L_NAME > 'R'")
 rc = report4sortSet(lReport, "STUDENT->L_NAME")

 'Save changes to a different file
 rc = report4save(lReport, App.Path + "\STUDENT2", 1)

 'Set the report's Parent handle before displaying report
 rc = report4parent(lReport, Report.hWnd)

 'Send report to screen rc = report4do(lReport)

254 CodeReporter

 'Set the output printer Call report4printerSelect(lReport)

 'Now send to printer
 rc = report4toScreen(lReport, 0)
 rc = report4do(lReport)

 'Free memory and close files
 Call report4free(lReport, 1, 1)

End Sub

relate4retrieve
VB Usage: RELATE4& = relate4retrieve(CODE4&, fileName$, openFiles%,

 dataPathName$)

Delphi Usage: Function relate4retrieve (c4 : CODE4 ; fileName : PChar;
openFiles : Integer; dataPathName : PChar) : RELATE4;

Description: This function retrieves a relation file and constructs the relation that was
saved with relate4save. In the process of loading the relation file,
relate4retrieve may also open the relation's data files.

For complex relations, use CodeReporter and it’s RELATION/SAVE RELATION
menu option to visually build the relation set and save it to disk. You can then
retrieve this relation into your application with relate4retrieve.

Parameters:
(vb/delphi)

CODE4/c4 This is a pointer to the application's CODE4 structure. This is used for
memory management and error handling.

fileName This is a null terminated character array which contains the file name
(including drive and directory) of the relation file. A file extension need not
be provided since the .REL extension is always used.

openFiles If openFiles is a true value (non-zero), relate4retrieve attempts to open the
data, index, and memo files referenced in the saved relation file if they are
not already opened. If relate4retrieve cannot find a certain data file
referenced in the relation file, that file and all lower level slave data files of
that file are omitted from the relation and an attempt is made to locate the
next data file.

If openFiles is a false value (zero), relate4retrieve assumes that all of the
data, index, and memo files are already opened. If a data file referenced in the
relation file is not opened, that file and all lower level slave data files in the
relation are omitted from the relation and the relate4retrieve continues to
build the relation.

Appendix F: Basic/Pascal API 255

dataPathName This parameter is a null terminated character array containing a new drive
and path for the data, index, and memo files stored in the relation file. If
dataPathName is NULL, the paths stored in the relation file are used. If no
paths were stored in the file, relate4retrieve attempts to open the files in the
current directory. If dataPathName is specified, it is used to override the
paths saved within the relation file.

Returns:

Not Zero The relation was successfully retrieved from the specified relation file.

Zero An error occurred while reading the relation file or opening the relation's top
master data file. See the CODE4.error_code member variable for the
specific error setting.

See Also: relate4save, relate4init, relate4free

relate4save
VB Usage: rc% = relate4save(RELATE4&, fileName$, savePathNames%)

Delphi Usage: Function relate4save (r4 : RELATE4 ; fileName : PChar;
savePathNames : Integer) : Integer ;

Description: This function saves the specified relation in a relation file.

Parameters:
(vb/delphi)

RELATE4/r4 This is a pointer to the relation that is to be saved to a relation file.

fileName This is a null terminated character array which contains the file name
(including drive and directory) of the relation file. A file extension need not
be provided since the .REL extension is always used.

savePathNames If this parameter contains a true value (non-zero), relate4save saves the full
path name of the files used in the relation. If savePathNames contains a
false value (zero), only the actual file name is saved.

Returns:

0 The relation file was successfully saved.

r4no_create The relation file could not be created. This is generally caused when
fileName conflicts with a file that already exists, or if the application does
not have read/write privileges to the desired drive.

< 0 Error.

See Also: relate4retrieve

256 CodeReporter

relate4topMaster
VB Usage: RELATE4& = relate4topMaster(RELATE4&)

Delphi Usage: Not available.

Description: This function returns a pointer to the RELATE4 structure of the top master in
the relation set. This function is only valid from Visual Basic.

Parameters:
(vb/delphi)

RELATE/r4 This is a pointer to any RELATE4 structure in the relation set.

Returns:

Not Zero A pointer to the RELATE4 structure of the top master relation.

 0 Error.

report4caption
VB Usage: rc% = report4caption(REPORT4&, caption$)

Delphi Usage: Function report4caption (r4 : REPORT4; caption : PChar) : Integer;

Description: This function sets the text of the caption for the report output window when
the report is sent to the screen.

Parameters:
(vb/delphi)

REPORT4/r4 This is a REPORT4 pointer to the report for which the window caption is
set.

caption This is a string containing the text to be placed in the caption portion of the
output window. report4caption makes a copy of caption.

Returns:

0 The caption was set successfully.

< 0 Error.

Appendix F: Basic/Pascal API 257

report4currency
VB Usage: rc% = report4currency(REPORT4&, currency$)

Delphi Usage: Function report4currency (r4 : REPORT4; currency : Char) : Integer;

Description: This function sets the text to be displayed immediately to the left of numeric
output objects that are formatted as currency values.

Parameters:
(vb/delphi)

REPORT4/r4 This is a REPORT4 pointer to the report for which the currency characters
are set.

currency This is a string containing the currency symbol(s). currency may contain up
to ten (10) characters. report4currency makes a copy of currency. If this
function is not called, the dollar symbol ($) is assumed.

Returns:

0 The currency character(s) were set successfully.

< 0 Error.

report4dateFormat
VB Usage: rc% = report4dateFormat(REPORT4&, format$)

Delphi Usage: Function report4dateFormat (r4 : REPORT4; format : PChar) : Integer;

Description: This function sets the default date format for the specified report. All new
output objects that evaluate to a date value, by default, use this format for
output. When the report is initially created, the value of the
CODE4.date_format member variable is stored within the report's default
date format.

Parameters:
(vb/delphi)

REPORT/r4 This is a pointer to the report for which the date format is set.

format This is a string which contains the date format to be used. This string should
contain the picture formatting characters ('D', 'M', 'C', 'Y').
report4dateFormat creates a copy of format.

Returns:

0 Success.

< 0 Error. REPORT4 was invalid.

258 CodeReporter

report4decimal
VB Usage: rc% = report4decimal(REPORT4&, decimalChar$)

Delphi Usage: Function report4decimal (r4 : REPORT4; decimalChar : Char) : Integer;

Description: This function specifies the character to be used as the decimal separator
between the whole a fractional portion of a number in a numeric output
object.

Parameters:
(vb/delphi)

REPORT4/r4 This is a REPORT4 pointer to the report for which the decimal character is
used.

decimalChar This is the character used as the decimal separator. The default character is
the decimal point ('.').

Returns:

0 Success.

< 0 Error. REPORT4 was invalid.

report4do
VB Usage: rc% = report4do(REPORT4&)

Delphi Usage: Function report4do (r4 : REPORT4) : Integer;

Description: This function causes the specified report to be outputted to the
selected device.

When outputting the report under Windows, report4do disables the report's
parent window (specified by report4parent) until the report window has
been closed. This prevents the application from possibly updating any
report-specific database information while the report is executing.

For Windows programs, you must call report4parent before calling this
function. Failure to do can cause unpredictable results.

Parameters: REPORT4/r4 specifies the report to be outputted.
(vb/delphi)

Returns:

0 Success. The report was successfully outputted.

r4terminate A relation was unable to be made and the error action specified with
relate4errorAction was relate4terminate.

< 0 Error.

See Also: report4toScreen, report4printerSelect, report4output

Appendix F: Basic/Pascal API 259

report4free
VB Usage: Call report4free(REPORT4&, freeRelate%, closeFiles%)

Delphi Usage: Procedure report4free (r4 : REPORT4; freeRelate : Integer;
 closeFiles : Integer);

Description: This function frees all memory associated with the report.

Parameters:
(vb/delphi)

REPORT4/r4 This is a REPORT4 pointer which specifies the report to be freed from
memory.

freeRelate If this parameter contains a true value (1), the memory associated with
the report's relation is automatically freed. If a false value (0) is passed,
the relation is unaffected.

closeFiles Setting this parameter to a true value (1), causes REPORT4FREE to
automatically close the data, index, and memo files referenced in the report.
If closeFiles is false, or if freeRelate is false, this setting is ignored.

report4margins
VB Usage: rc% = report4margins(REPORT4&, left&, right&, top&,

bottom&, unitType%)

Delphi Usage: Function report4margins (r4 : REPORT4; left, right, top, bottom : Longint;
unitType : Integer) : Integer;

Description: This function is used to change the default margins of the report.

Some output devices, such as laser printers, have a hardware margin which is
not under software control. report4margins checks for this condition and will
not allow the margins to violate the physical margins of the device.

Parameters:
(vb/delphi)

REPORT4/r4 This is a REPORT4 pointer to the report for which the margins are set.

left This is the size of the left margin in the provided increments.

right This is the size of the right margin in the provided increments.

top This is the size of the top margin in the provided increments.

bottom This is the size of the bottom margin in the provided increments.

260 CodeReporter

unitType This is the unit of measure for the above margin settings. In graphical user
interfaces, 1000ths of an inch may conveniently be used. In character-
based interfaces, it is often more convenient to use characters. unitType
may be one of the following values:

1 The units listed are in characters.

0 The units listed are in 1000ths of an inch.

Returns:

0 The margins were successfully set.

< 0 Error.

See Also: report4pageSize

report4pageSize
VB Usage: rc% = report4pageSize(REPORT4&, height&, width&, unitType%)

Delphi Usage: Function report4pageSize (r4 : REPORT4; height : Longint;
width : Longint; unitType : Integer) : Integer;

Description: This function is used to set the vertical and horizontal page size for the
report. For a Windows application, the default setting is the current page
size of the selected printer. For a non-Windows application, the default
setting is 25x80 characters.

Parameters:
(vb/delphi)

REPORT/r4 This is a pointer to the report for which the page size is set.

height This is the vertical size of the output page in the specified units.

width This is the horizontal size of the output page in the specified units.

unitType This parameter is used to determine the unit of measure used by height and
width. unitType may be one of the following values:

1 The height and width are in characters.

0 The height and width are in 1000ths of an inch.

Returns:

0 The page size was successfully set.

< 0 Error.

See Also: report4margins, report4printerSelect

Appendix F: Basic/Pascal API 261

report4parent
VB Usage: rc% = report4parent(REPORT4&, Form.hWnd%)

Delphi Usage: Function report4parent (r4 : REPORT4; hW : HWND) : Integer;

Description: This function designates the parent window handle of the window created
for report output. Form.hWnd should be the .hWnd property of the form in
your Visual Basic application where focus will be returned to when the
report window is closed.

Parameters:
(vb/delphi)

REPORT4/r4 This is a REPORT4 pointer to the report for which the parent window is set.

Form.hWnd/hW This is a Microsoft Windows window handle to the form whose focus will
be set to when the report is finished. If output is begin sent to a window, this
form will be disabled until the report window is closed.

Returns:

0 Success

< 0 Error. REPORT4 is invalid.

For Windows applications, this function must be called before calling report4do.
Failure to do so can cause unpredictable results.

report4printerSelect
VB Usage: Call report4printerSelect(REPORT4&)

Delphi Usage: Procedure report4printerSelect (r4 : REPORT4);

Description: This function invokes the "Printer Setup" common dialog to specify a printer
for the report.

This function requires the presence of the Microsoft Windows 3.1 Dynamic
Link Library, COMMDLG.DLL. Normally the Windows Setup application
installs this file in your \WINDOWS\SYSTEM sub-directory. If your
application runs under Windows 3.0, or you don’t have this file installed in
an appropriate directory, this function will not succeed.

Parameters:
(vb/delphi)

REPORT4/r4 This is a REPORT4 pointer to the report that is configured for the selected
printer.

262 CodeReporter

report4querySet
VB Usage: rc% = report4querySet(REPORT4&, queryExpr$)

Delphi Usage: Function report4querySet (r4 : REPORT4; queryExpr : PChar) : Integer;

Description: This function sets a query for the report’s relation set.

The queryExpr expression is evaluated for each composite record. If the
expression evaluates to a .TRUE. value, the record is used within the report.
If queryExpr evaluates to a .FALSE. value, the record is ignored.

Parameters:
(vb/delphi)

REPORT/r4 This is a REPORT4 pointer to the report for which a query is set.

queryExpr This is a logical dBASE expression that is used to place a limit on the
composite data file. If queryExpr is a null string (“”), all the records of the
composite data file are used within the report.

Field names in the query expression must use the data file qualifier. eg. "DBF-
>NAME='SMITH' " is an example of a valid query expression.

Returns:

0 The query was successfully set.

< 0 Error.

See Also: relate4querySet, relate4sortSet, report4sortSet

report4relate
VB Usage: RELATE4& = report4relate(REPORT4&)

Delphi Usage: Function report4relate (r4 : REPORT4) : RELATE4;

Description: This function returns a pointer to the RELATE4 structure associated with the
report.

Parameters:
(vb/delphi)

REPORT4/r4 This is a REPORT4 pointer to the report for which the associated RELATE4
pointer is returned.

Returns:

Not Zero The RELATE4 pointer associated with the report.

0 Error.

See Also: report4querySet, report4sortSet

Appendix F: Basic/Pascal API 263

report4retrieve
VB Usage: REPORT4& = report4retrieve(CODE4&, fileName$, openFiles%,

dataPath $)

Delphi Usage: Function report4retrieve (c4 : CODE4; fileName : PChar;
openFiles : Integer; datapath : PChar) : REPORT4;

Description: This function retrieves a report file from disk and constructs the appropriate
REPORT4 structure.

Implicitly, a relation set is also created along with a corresponding
RELATE4 structure.

Parameters:
(vb/delphi)

CODE4/c4 This is a pointer to the application's CODE4 structure. This is used for
memory management and error handling.

fileName This is a string which contains the drive, directory and file name of the
report file. If no file name extension is provided, report4retrieve assumes a
.REP extension.

openFiles If openFiles contains a true value (1), report4retrieve attempts to
open the data files referenced in the report if they are not already open. If a
referenced data file cannot be located, it and any dependant slave data files
are not included in the report. Any output objects and/or expressions that
use the missing data files are automatically removed from the report.

If openFiles contains a false value (0), all files are assumed to be open.

dataPath If dataPath is a null string (“”), report4retrieve uses the paths stored in the
report file to locate the report's data files. If the report file does not include
path names to the data files, report4retrieve assumes the data files are in the
current directory.

If dataPath is not null, it is assumed to be a string containing the drive
and/or directory where all of the report's data files may be located. The
dataPath directory overrides any paths stored within the report.

Returns:

Not Zero The report was successfully loaded. The returned REPORT4 pointer may be
used with other report module functions.

0 Error. The report could not be loaded. This may result from an inability to
locate the top master data file, or allocate enough memory for the report.

See Also: relate4retrieve

264 CodeReporter

report4save
VB Usage: rc% = report4save(REPORT4&, fileName$, savePaths%)

Delphi Usage: Function report4save (r4 : REPORT4; fileName : PChar;
savePath : Integer) : Integer;

Description: This function saves a report into a soft-coded report file which may be
retrieved either through CodeReporter or by calling report4retrieve.

report4save does not alter the report in memory in any way. It may be called
before or after report4do with no ill effects.

If a report with graphic output objects is loaded in a non-Windows application,
and saved with report4save, the graphic output objects are not saved in the
new report file.

Parameters:
(vb/delphi)

REPORT4/r4 This is a REPORT4 pointer to the report to be saved to disk.

fileName This is a string containing the drive, directory, and
file name of the file in which the report is saved. If an extension is provided,
it is used; otherwise the default extension of .REP is appended to the file
name.

If a drive and/or path is not provided, the current directory is assumed.

savePaths If savePaths contains a true value (1), report4save includes the drive
and path for each file referenced in the report within the report file. If
savePaths contains a false value (0), only the file names are saved within
the report.

Returns:

0 The report was successfully saved to the specified file.

< 0 Error. REPORT4 report was invalid, or the specified file could not be
created.

See Also: report4retrieve

Appendix F: Basic/Pascal API 265

report4separator
VB Usage: rc% = report4separator(REPORT4&, separator$)

Delphi Usage: Function report4separator (r4 : REPORT4; separator : Char) : Integer;

Description: This function specifies the character to be used as the separator between
hundreds and thousands, between thousands and millions, etc.

Parameters:
(vb/delphi)

REPORT/r4 This is a REPORT4 pointer to the report for which the numeric separator is
specified.

separator This is the character used as a numeric separator. If no numeric separator is
desired, pass a null string (“”) for separator.

If this function is not called, a comma (‘,’) is used as the default numeric
separator.

Returns:

0 The numeric separator was successfully set.

< 0 Error. REPORT4 was invalid.

report4sortSet
VB Usage: rc% = report4sortSet(REPORT4&, sortExpr$)

Delphi Usage: Function report4sortSet (r4 : REPORT4; sortExpr : PChar) : Integer;

Description: This function specifies the sorted order in which the composite records of
the report are retrieved.

This function overwrites any sort expression set with relate4sort_set.

Parameters:
(vb/delphi)

REPORT4/r4 This is a REPORT4 pointer to the report for which the sorted order applies.

sortExpr This is a string which contains the dBASE expression used to sort the
composite data file. This expression may evaluate to a Character, Date, or
Numeric value.

Field names in the query expression must use the data file qualifier. "DBF-
>NAME='SMITH' " is an example of a valid query expression.

Returns:

0 Success.

< 0 Error or REPORT4 was invalid.

See Also: relate4sortSet, report4querySet

266 CodeReporter

report4toScreen
VB Usage: rc% = report4toScreen(REPORT4&, toScreen%)

Delphi Usage: Function report4toScreen (r4 : REPORT4; toScreen : Integer) : Integer;

Description: This function is used to indicate whether report4do should create a window
and send the report output to it, or instead send the report to selected printer.

The default action for report4do is to send the report output to a window.
Parameters:
(vb/delphi)

REPORT4/r4 This is a REPORT4 pointer to the report that is to be outputted.

toScreen This parameter specifies where the report output should go. toScreen may
have one of the following values:

1 A window is created and report output is sent to the window.

0 Report output is sent to the selected printer.

Returns:

>= 0 The previous toScreen setting is returned.

< 0 Error. REPORT4 or toScreen is invalid.

See Also: report4output, report4do

Appendix G: Launch Utilities 267

Appendix G: Launch Utilities
CodeReporter ships with utility programs which may be used to output
CodeReporter report files outside of CodeReporter. These utilities are
described below.

Windows
CodeReporter provides a Windows utility program which may be used to
output CodeReporter report files. This program, called LAUNCH_W.EXE,
is a Microsoft Windows executable that can be used to quickly view or print
reports from Windows without loading CodeReporter. LAUNCH_W has an
interactive interface as well as a command line interface for easy use in icons.

The source code, LAUNCH_W.C, is provided as an added example of using
CodeReporter report files and the report functions under Windows.

When LAUNCH_W is executed without command line parameters, the
"Launch Options" dialog is invoked with all controls but the "Load Report"
and "Exit" buttons disabled. Use "Load Report" to invoke the "Specify
Report" dialog and select a report file, or choose "Exit" to end the
application. The "Launch Options" dialog is used to determine the
destination of the report, and set the sort and/or query expressions.

268 CodeReporter

Load Report If the current report was loaded in error, or if another report is to be
outputted, use the "Load Report" button to invoke the "Select Report"
dialog. Use this dialog to locate and open a new report file. When the
"Launch Options" dialog returns, the new report is loaded.

Display Clicking on the "Display" button outputs the report to a window. The page
size of the window is set to that of the currently selected printer, and so it
may be necessary to use the scroll bars to view the entire page of the report.

Print Clicking on the "Print" button causes the launch utility to print the report to
the currently selected printer. During the printing of the report, a dialog is
displayed to indicate the report is being printed. The "Cancel" button of this
dialog may be used to stop the printing of the report.

Printer Setup If the report is not to be outputted to the Windows default printer, or if the
printer's settings must be modified, the "Printer Setup" button may be used to
invoke the "Print Setup" common dialog. This is used to specify a printer to
which the report is outputted, and to configure it.

To Data File If the report file includes an output data file template definition (made with
REPORT | OUTPUT FILE TEMPLATE), the "To Data File" button will be enabled.
Selecting this button causes the report to be directed to the data file specified
in the "Destination Data File" edit control. If the report does not include a
data file template definition, the "To Data File" button is disabled and the
report can not be outputted to a data file.

Sort Expression The report launch utility also provides the ability to modify the sort and query
expressions that are saved in the report. A change in the contents of the "Sort
Query Expression" and/or "Query Expression" edit controls is reflected in the
output of the report.

For more information on sorting and querying a report, see the
"Relational Reporting" chapter.

Once the report is outputted, the launch utility returns to this dialog.

Command Line
LAUNCH_W accepts command line parameters which may be used to
automate the load and display process. These parameters may be added to
the LAUNCH_W Properties or specified in the Program Manager's File | Run
option. See the Windows User's Guide for more information about using
command line parameters with Windows applications.

Usage: LAUNCH_W [{name} [-q{expr}] [-s{expr}] [[-v | -p]

 | [{ -d{name}} [-q{expr}][-s{expr}]] [. . .]]]

name This is the name of the first report to be outputted or loaded.

-d{name} If subsequent reports are to be outputted, they may be specified using the -d
option. This option may be considered as a separator between reports.

Appendix G: Launch Utilities 269

-q{expr} Change the default query expression. Query expressions must be entered in
double quotes ("). For example:

LAUNCH_W SAMPLE.REP -q “DBF->FIELDNAME > 'LINCOLN'"

String literals, such as 'Lincoln', above, must be entered in single quotes (').

-s{expr} Change the default sort expression. Sort expressions must be entered in
double quotes ("). For example:
LAUNCH_W SAMPLE.REP -s “DBF->FIELDNAME"

String literals, such as 'Lincoln', above, must be entered in single quotes (').

-v The -v option automatically displays the specified report to the monitor.
-p The -p option automatically prints the report to the Windows default printer.

When either of these options is specified, LAUNCH_W is invoked
minimized.

If neither option is specified, the specified report is loaded, and the "Launch
Options" dialog is invoked -- only the first report is loaded.

Both -p and -v may not be specified. This setting affects all loaded reports.

Non-Windows
CodeReporter also provides a set of non-Windows versions of the launch
utility. In the stand-alone configuration of CodeBase, three different version
are installed—one to support each supported file formats (FoxPro, dBASE
IV and Clipper).

In the client/server configuration—where index format is determined on the
server-side—there are two utilities provided, one for IPX/SPX
communications and the other for TCP/IP communications. These utility can
be used for accessing whichever file format the server is presently supporting.
When launching reports, keep in mind that the report’s data files must be
accessible by the database server.

All of these programs are DOS executables that can be used to quickly view
or print reports from a DOS command line or batch file.

The source code for these various configurations of the launch utility is
supplied in LAUNCH_D.C, and is provided as an added example of using the
report functions, and as a way to use LAUNCH_D under other operating
systems, or with different configuration switches.

The non-Windows launch utility cannot access Windows-specific styles, so
reports outputted with CodeReporter will be different than those outputted with
this utility.

Sizes of group headers and footers -- as well as the title, summary, page header
and page footer -- are rounded to the nearest 1/6th of an inch (12 points), since a
line on most printers is 1/6th of an inch high.

270 CodeReporter

File Names
The pre-compiled versions of the launch utility (installed in the .\LAUNCH
directory) are named as follows:

Name Compatibility

LNCH_FOX* FoxPro 2.0 (or higher) (.CDX)

LNCH_MDX* dBASE IV (.MDX only)

LNCH_CLI* Clipper (.NTX)

LNCH_SPX† Server’s File Format - IPX/SPX 16-Bit

LNCH_SK† Server’s File Format - TCP/IP 32-Bit

* stand-alone
† client/server

As a convention, this manual lists the launch utility name as LAUNCH_D

Usage: LAUNCH_D {name} [-q{expr}] [-s{expr}] [-x{nn}] [-y{nn}] [-p[dest] | -
f[dataName] [-t]

Options:

-q{expr} Change the default query expression. Query expressions must be entered in
double quotes ("). For example:
LAUNCH_D SAMPLE.REP -q “DBF->FIELDNAME > 'LINCOLN'"

String literals, such as 'Lincoln', above, must be entered in single quotes (').

-s{expr} Change the default sort expression. Sort expressions must be entered in
double quotes ("). For example:

LAUNCH_D SAMPLE.REP -s “DBF->FIELDNAME

String literals, such as 'Lincoln', above, must be entered in single quotes (').

-x{nn} Change the default horizontal size of the page (in characters). The default
number of characters per line is 80. For example:
LAUNCH_D SAMPLE.REP -y70

-y{nn} Change the default vertical size of the page (in lines). The default number of
lines is 25. The most common printer page size is 66. For example:
LAUNCH_D SAMPLE.REP -y66

Appendix G: Launch Utilities 271

-p[dest] Change the default print destination. Reports by default go to the monitor.
Specifying the -p option alone sends output to 'standard print'. If a character
string is specified, output is directed to a file with the provided name. For
example:

LAUNCH_D SAMPLE.REP -p <== Output goes to 'standard print'

LAUNCH_D SAMPLE.REP -pSAMPLE.OUT <== Output goes to file

LAUNCH_D SAMPLE.REP -pLPT2 <== Output goes to LPT2 port

This option may not be used with the -f option.

-f[dataName] Specify that report output should be sent to a data file. This option only
applies if the report has a data file template saved within it. If dataName is
not specified, the report is outputted to the data file name saved in the report.
If dataName is specified, a data file is created with its name and the report
output is stored within it.

-t Use the non-Windows printer codes stored in the report file's styles. By
default, LAUNCH_D does not send the printer codes.

